Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Regeneration Strategies for NOx Adsorber Catalysts

1997-10-01
972845
The successful commercialization of lean burn gasoline engines is dependent upon development of an effective emission aftertreatment system which can provide HC, CO, and NOx control not only under lean operating conditions, but also when the engine operates at the stoichiometric point under conditions of high engine speed and/or load. NOx adsorber catalysts (NOx traps) are capable of storing NOx under lean condition, and subsequently releasing and catalyzing its reduction under conditions rich of the stoichiometric point. Aftertreatment systems based on these types of catalysts show great potential for reaching current and future emission standards. Key to the successful application of NOx adsorber catalysts is the development of engine control strategies which maximize NOx conversion while minimizing the fuel economy penalty associated with adsorber regeneration. In this paper limitations associated with NOx trap adsorption and regeneration strategies are discussed.
Technical Paper

A Durable In-Line Hydrocarbon Adsorber for Reduced Cold Start Exhaust Emissions

1997-10-01
972843
A new adsorber system for reducing cold start HC emissions has been developed that offers a passive and simplified alternative to previous HC adsorber technologies. The series flow in-line adsorber concept combines existing catalyst technology with a zeolite based HC adsorber by simply incorporating one additional adsorber catalyst substrate into conventional catalytic converters without any valving, purging lines or special substrates. The HC adsorber catalyst consist of a durable zeolite, a washcoat binder, precious group metals and rare earth promoters on standard monolithic substrates. For selected vehicle applications, a single converter containing a light off catalyst, a catalyzed HC adsorber and a standard three-way catalyst can be used in the underfloor position. Even after severe engine aging, the vehicle FTP results show that this new technology remains effective in reducing the cold start HC emissions while providing good CO and NOx conversions.
Technical Paper

Impact of Alkali Metals on the Performance and Mechanical Properties of NOx Adsorber Catalysts

2002-03-04
2002-01-0734
Performance of two types of NOx adsorber catalysts, one based on Ba and the other based on Ba with alkali metals, was compared fresh and after thermal aging. Incorporation of sodium(Na), potassium(K) and cesium(Cs) into NOx adsorber washcoat containing barium significantly increases the NOx conversions in the temperature range of 350-600°C over that of the alkali metal free NOx adsorber catalysts. NOx performance benefit and HC performance penalty were observed on both engine dynamometer and vehicle tests for the “Ba+alkali metals” NOx adsorber catalysts. “Ba+alkali metals” NOx adsorber catalysts also demonstrate superior sulfur resistance with better NOx performance after repeated sulfur poisonings and desulfations over the “Ba based” NOx adsorber catalysts.
Technical Paper

A Systematic Experimental Investigation of Pd-Based Light-Off Catalysts

2005-10-24
2005-01-3848
Close-coupled or manifold catalysts have been extensively employed to reduce emissions during cold start by achieving quick catalyst light-off. These catalysts must have good thermal durability, high intrinsic light-off activity and high HC/CO/NOx conversions at high temperature and flow conditions. A number of studies have been dedicated to engine control, manifold design and converter optimization to reduce cold start emissions. The current paper focuses on the effect of catalyst design parameters and their performance response to different engine operating conditions. Key design parameters such as catalyst formulation (CeO2 vs. non CeO2), precious metal loading and composition (Pd vs. Pd/Rh), washcoat loading, catalyst thermal mass, substrate properties and key application (in use) parameters such as catalyst aging, exhaust A/F ratio, A/F ratio modulation, exhaust temperature, temperature rise rate and exhaust flow rate were studied on engine dynamometers in a systematic manner.
Technical Paper

Dual-Catalyst Underfloor LEV/ULEV Strategies for Effective Precious Metal Management

1999-03-01
1999-01-0776
Dual-brick catalyst systems containing Pd-only catalysts followed by Pt/Rh three-way catalysts (TWCs) provide an effective strategy for managing Pt, Pd and Rh precious metal inventories while achieving LEV/ULEV emission standards. Engine aged dual-brick converters containing front Pd catalysts followed by rear Pd/Rh or Pt/Rh TWCs demonstrated LEV emission levels in an underfloor location on a TLEV calibrated 3.8L vehicle, and achieved ULEV emissions with air addition. Using identical advanced washcoat formulations stabilized with ceria-zirconia promoters, single-brick Pt/Rh TWCs demonstrated equivalent performance to Pd/Rh TWCs after thermally severe aging, and dual-brick [Pd + Pt/Rh] systems also had equivalent performance to [Pd + Pd/Rh] catalyst systems. While a Pd-only system also achieved 100K mi equivalent LEV emissions, both dual-brick options lowered emissions further using substantially lower loadings and more balanced precious metal usage.
Technical Paper

NOx Performance Degradation of Aftertreatment Architectures Containing DOC with SCR on Filter or Uncatalyzed DPF Downstream of DEF Injection

2019-04-02
2019-01-0740
SCR on filter, also known as SCRoF, SCRF, SDPF, has been utilized to meet the stringent light duty Euro 6 emission regulations. Close-coupled DOC-DEF-SCR on filter with underfloor SCR architectures, offer a balance of NOx performance at cold start and highway driving conditions. In contrast, the DOC-DPF-DEF-SCR architecture has been most commonly selected to meet the on-road and non-road heavy duty emission regulations worldwide. Diesel engines applied to off road vehicles can operate under higher loads for extended times, producing higher exhaust temperatures and engine out NOx emissions. New European Stage V emission regulations will mandate diesel particulate filter (DPF) adoption because of particulate number and more stringent particulate mass requirements. Three aftertreatment architecture choices with diesel particulate filters (DPF) were evaluated as candidates to fulfill the Stage V emission regulations.
X