Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Modeling and Analysis of Microwave Regeneration Process in Wall-Flow Diesel Particulate Filter

2012-04-16
2012-01-1289
To meet more stringent emission regulations for diesel engines, diesel particulate filters (DPF) have been widely used for diesel engines. However, the DPF regeneration is a great challenge for fuel economy. In this paper, a mathematical model characterizing the microwave regeneration process of a wall-flow particulate filter is introduced to better understand the process. Based on this model, important parameters such as evolutions of the energy stream densities of microwaves, wall temperature, regeneration efficiency and the pressure drop in the filters, both cordierite and SiC, are investigated. These results can provide an important theoretical guide for optimizing and controlling the microwave regeneration process.
Technical Paper

Fuel Economy Regulations and Technology Roadmaps of China and the US: Comparison and Outlook

2018-09-10
2018-01-1826
In order to address the increasing energy and environmental concerns, China and the US both launched the fuel economy regulations and aim to push the development of technology. In this study, the stringency of CAFC and CAFE regulations and the technology development of two countries are compared. Besides, the optimal technology pathways of America and automakers for the compliance of CAFE regulations are calculated based on the modified VOLPE model, and the results are used as reference for China. The results indicate that the annual regulation improvement rates of China is higher than America and the AIR of China 2015-2020 regulation reaches 6.2% and is the most stringent phase in 10 years from 2015 to 2025. From the perspective of technology, there are still big gaps between China and the US in the applications of advanced fuel saving technologies.
Technical Paper

Structure Analysis and Cost Estimation of Hybrid Electric Passenger Vehicle and the Application in China Case

2018-04-03
2018-01-1131
Hybrid electric vehicle (HEV) is regarded as an important technology in solving the energy and environment crisis. In this paper, the HEV technology applied in passenger cars by major automotive OEMs such as Toyota, Honda, GM, Ford, Volkswagen, BMW are investigated. The configuration diagrams for each OEM are presented. Based on the architecture analysis, a classification is done according to similar structures and performances. Furthermore, a cost estimation methodology for HEV is presented based on the preliminary tear-down research done by Environment Protection Agency (EPA). Meanwhile, the logarithmic relationship between fuel consumption (FC) reduction and degree of hybridization (DOH) is discovered by investigating 30 different hybrid cars. Combining the cost estimation and relation between FC&DOH, the hybridization cost for cars to meet the FC regulations can be calculated.
Technical Paper

Application of Secondary Air Injection for Simultaneously Reducing Converter-In Emissions and Improving Catalyst Light-Off Performance

2002-10-21
2002-01-2803
Improving catalyst light-off characteristics during cold start and reducing engine-out (more accurately converter-in) emissions prior to catalyst light-off have been regarded as the keys to meeting future stringent emissions regulations. Many technologies and control strategies have been proposed, and some of them have already been incorporated into production, to address these issues. Among these, secondary air injection received a lot of attention. This study was initiated to investigate the thermal and chemical processes associated with secondary air injection inside the exhaust system in order to maximize the simultaneous benefit of improving catalyst light-off performance and reducing converter-in emissions. The effects of several design and operating parameters such as secondary air injection location, exhaust manifold design, spark timing, engine enrichment level, and secondary air flow rate were carefully examined.
Book

Homogeneous Charge Compression Ignition (HCCI) Engines

2003-03-03
The homogeneous charge, compression-ignition (HCCI) combustion process has the potential to significantly reduce NOx and particulate emissions, while achieving high thermal efficiency and the capability of operating with a wide variety of fuels. This makes the HCCI engine an attractive technology that can ostensibly provide diesel-like fuel efficiency and very low emissions, which may allow emissions compliance to occur without relying on lean aftertreatment systems.
Book

Technologies for Near-Zero-Emission Gasoline-Powered Vehicles

2006-10-23
Dr. Fuquan (Frank) Zhao and experts in the field address a broad spectrum of key research and development issues in the rapidly progressing area of near-zero-emission gasoline-powered vehicles. Written in response to the increasingly stringent emissions legislation, this book provides the reader with a concise introduction to technology developments in near-zero-emission gasoline-powered vehicles. The material reflects global technical initiatives within the automotive and research communities. In all, this book contains more than 450 pages, with nearly 200 descriptive diagrams and/or images. It will serve as a valuable desk reference and provide the basics for those who are interested in understanding this advancing technology.
X