Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

RVP Reduction for Control of Wintertime CO

1998-05-04
981373
A vehicle emissions test program was conducted to evaluate the impact of gasoline RVP reduction on CO emissions under conditions that are typical of CO exceedance days in Las Vegas and Los Angeles. Test results showed that CO emissions were reduced in the Las Vegas fleet when RVP was changed from 12 to 9 psi. In the Los Angeles fleet, the results were less consistent, perhaps due to the poorer integrity of evaporative emissions control systems on these vehicles. This suggests that an optimum emissions control strategy might include both RVP reduction and an effective vehicle inspection and maintenance (I&M) program.
Technical Paper

Effects of Gasoline Properties (T50, T90, and Sulfur) on Exhaust Hydrocarbon Emissions of Current and Future Vehicles: Speciation Analysis - The Auto/Oil Air Quality Improvement Research Program

1995-10-01
952505
Species analyses have been performed on engine-out and tailpipe hydrocarbon mass emissions to help understand why fuels with higher T50 and/or T90 distillation temperatures produce higher engine-out and tailpipe hydrocarbon emissions and why fuels with higher T90 distillation temperatures produce higher engine-out and tailpipe specific reactivities. Species analyses were also performed to examine the effects of fuel sulfur level on engine-out and tailpipe species and specific reactivities. These analyses were performed on three different test-vehicle fleets representing varying levels of emissions control technology and the effect of emissions control technology was examined. Individual hydrocarbon species concentrations in both the engine-out and tailpipe were found to correlate linearly with the concentrations of the same species in the fuel, implying that a small fraction of the fuel escapes the combustion process and conversion over the catalyst.
Technical Paper

Effects of Gasoline Properties (T50, T90, and Sulfur) on Exhaust Hydrocarbon Emissions of Current and Future Vehicles: Modal Analysis - The Auto/Oil Air Quality Improvement Research Program

1995-10-01
952504
Modal analyses have been performed on engine-out and tailpipe hydrocarbon mass emissions to help understand why fuels with higher T50 and/or T90 distillation temperatures produce somewhat higher engine-out hydrocarbon emissions and substantially higher tailpipe hydrocarbon emissions. Modal analyses were also performed to examine how increased fuel sulfur increases tailpipe hydrocarbon emissions and to identify which gasoline properties in this study are responsible for the lower tailpipe hydrocarbon emissions with reformulated gasolines. These analyses were performed on three different test vehicle fleets representing varying levels of emissions control technology. The modal analyses showed that the substantially higher tailpipe hydrocarbon emissions from fuels with high T50 and/or T90 distillation temperatures result primarily from these fuels producing substantially higher engine-out hydrocarbon emissions during the first cycle of the Federal Test Procedure (FTP).
Technical Paper

Effects of Gasoline Properties on Emissions of Current and Future Vehicles - T50, T90, and Sulfur Effects - Auto/Oil Air Quality Improvement Research Program

1995-10-01
952510
Exhaust emissions were measured using a matrix of fuels designed to expand on prior AQIRP work by investigating potential interactive effects of fuel distillation parameters T50 and T90, and of T90 and fuel sulfur content. (T50 and T90 represent the temperature at which 50 or 90% of the fuel distills in a standard test.) This fuel matrix was used also to investigate whether fuel effects found in prior work with then-current vehicle technology can be expected to continue in future lower emission vehicles. An additional pair of fuels was included to extend the range of T50. The vehicles were half of the AQIRP Current fleet (ten vehicles) used in prior studies, and two new fleets of six vehicles each. One of the new fleets was designed to 1994 Federal Tier 1 standards, and the other was Advanced Technology prototypes targeted for lower emission levels of 1995 and later. A set of six fuels was tested in all three fleets.
X