Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Development and Validation of a Snowmobile Engine Emission Test Procedure

1998-09-14
982017
An appropriate test procedure, based on a duty cycle representative of real in-use operation, is an essential tool for characterizing engine emissions. A study has been performed to develop and validate a snowmobile engine test procedure for measurement of exhaust emissions. Real-time operating data collected from four instrumented snowmobiles were combined into a composite database for analysis and formulation of a snowmobile engine duty cycle. One snowmobile from each of four manufacturers (Arctic Cat, Polaris, Ski-Doo, and Yamaha) was included in the data collection process. Snowmobiles were driven over various on- and off-trail segments representing five driving styles: aggressive (trail), moderate (trail), double (trail with operator and one passenger), freestyle (off trail), and lake driving. Statistical analysis of this database was performed, and a five-mode steady-state snowmobile engine duty cycle was developed.
Technical Paper

LOW-EMISSION SNOWMOBILES - THE 2001 SAE CLEAN SNOWMOBILE CHALLENGE

2001-12-01
2001-01-1832
The first Clean Snowmobile Challenge (CSC) was held in Jackson Hole, Wyoming in late March of 2000.(1)* It drew public attention to environmental issues associated with recreational products such as snowmobiles, and encouraged development of novel solutions through this SAE-sponsored student competition. While much good information was obtained, one area needing improvement was emissions measurement. In 2000, snowmobile emissions were measured using a drive-by infrared-type device. While this provided a rough indication of emission levels, more accurate data was desired to better reflect progress in reducing emissions. For this year's competition, Southwest Research Institute (SwRI) assembled the equipment necessary to provide brake-specific emissions measurement on-site. A truck-mounted mobile unit was outfitted with laboratory-grade instrumentation for measurement of HC, CO, NOx, CO2, and O2. A snowmobile chassis dynamometer was used to load the engines.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

Marine Outboard and Personal Watercraft Engine Gaseous Emissions, and Particulate Emission Test Procedure Development

2004-09-27
2004-32-0093
The U.S. EPA and the California Air Resources Board have adopted standards to reduce emissions from recreational marine vessels. Existing regulations focus on reducing hydrocarbons. There are no regulations on particulate emissions; particulate is expected to be reduced as a side benefit of hydrocarbon control. The goal of this study was to develop a sampling methodology to measure particulate emissions from marine outboard and personal watercraft engines. Eight marine engines of various engine technologies and power output were tested. Emissions measured in this program included hydrocarbons, carbon monoxide, oxides of nitrogen. Particulate emissions will be presented in a follow-up paper.
Technical Paper

Exhaust Emissions from Farm, Construction, and Industrial Engines and Their Impact

1975-02-01
750788
The research program on which this paper is based included both laboratory emission measurements and extrapolation of results to the national population of heavy-duty farm, construction, and industrial engines. Emission tests were made on four gasoline engines and eight diesel engines typical of those used in F, C, and I equipment. Gaseous and particulate emissions were measured during engine operation on well-accepted steady-state procedures, and diesel smoke was measured during both steady-state conditions and the Federal smoke test cycle. Emissions measured were hydrocarbons, CO, CO2, NO, NOx, O2, aliphatic aldehydes, light hydrocarbons, particulate, and smoke. Emission of sulfur oxides (SOx) was estimated on the basis of fuel consumed, and both evaporative and blowby hydrocarbons were also estimated where applicable (gasoline engines only). Data on emissions obtained from this study were compared with those available in the literature, where possible.
Technical Paper

Fuel and Additive Effects on Diesel Particulate-Development and Demonstration of Methodology

1976-02-01
760130
To develop a methodology for characterizing particulate emissions from diesel engines, one 2-stroke cycle engine and one 4-stroke cycle engine were operated in both individual steady-state modes and according to a variation of the 13-mode diesel emissions measurement procedure. Both engines were operated on three fuels, each used with one of two available diesel fuel additives as well as by itself. The primary particulate sampling technique employed was a dilution tunnel, and secondary evaluation techniques included a diluter-sampler developed under contract to EPA by another organization, a light extinction smokemeter, and a filter-type sampling smokemeter. Gaseous emissions were also measured, providing a running check on engine condition. Particulate mass rates were calculated from gravimetric data; and analysis of particulate included determination of sulfur, carbon, hydrogen, nitrogen, phenols, nitrosamines, trace metals, and organic solubles.
Technical Paper

Characterization of MOD I Multifuel Stirling Demonstration Vehicle Emissions

1989-02-01
890150
Emissions from a Stirling engine-powered 1986 model light-duty truck were measured using current EPA (chassis dynamometer) emissions certification procedures and certain specialized tests. Three fuels were used including unleaded gasoline, a blend of MTBE in unleaded gasoline, and JP-4. City (FTP) cycles and Highway (FET) cycles were run on all three fuels, and emissions measured during the cycles included hydrocarbons (HC), carbon monoxide (CO), and oxides of nitrogen (NOx). Fuel economy was also calculated for these tests. Additional pollutants measured during some of the tests included aldehydes, 1,3-butadiene, individual hydrocarbon species, and total particulate matter. In addition to the cyclic schedules, steady-state conditions were run on JP-4 and straight gasoline for regulated emissions and fuel economy. The conditions consisted of several simulated gradients at three vehicle speeds, plus idle.
Technical Paper

Emissions from Two Methanol-Powered Buses

1986-03-01
860305
Emissions Iron the two methanol-powered buses used in the California Methanol Bus Demonstration have been characterized. The M.A.N. SU 240 bus is powered by M.A.N.'s D2566 FMUH. methanol engine, and utilises catalytic exhaust af tertreatment. The GMC RTS II 04 bus is powered by a first-generation DDAD 6V-92TA methanol engine without exhaust aftertreatment. Emissions of HC, CO, NOx, unburned methanol, aldehydes, total particulates, and the soluble fraction of particulate were determined for both buses over steady-state and transient chassis dynamometer test cycles. Emission levels from the M.A.N. bus were considerably lower than those from the GMC bus, with the exception of NOx, Comparison of emission levels fro n methanol-and diesel-powered buses indicates that substantial reductions in emissions are possible with careful implementation of methanol fueling.
Technical Paper

Emissions From Snowmobile Engines Using Bio-based Fuels and Lubricants

1997-10-27
978483
Snowmobile engine emissions are of concern in environmentally sensitive areas, such as Yellowstone National Park (YNP). A program was undertaken to determine potential emission benefits of use of bio-based fuels and lubricants in snowmobile engines. Candidate fuels and lubricants were evaluated using a fan-cooled 488-cc Polaris engine, and a liquid-cooled 440-cc Arctco engine. Fuels tested include a reference gasoline, gasohol (10% ethanol), and an aliphatic gasoline. Lubricants evaluated include a bio-based lubricant, a fully synthetic lubricant, a high polyisobutylene (PIB) lubricant, as well as a conventional, mineral-based lubricant. Emissions and fuel consumption were measured using a five-mode test cycle that was developed from analysis of snowmobile field operating data.
Technical Paper

Toward the Environmentally-Friendly Small Engine: Fuel, Lubricant, and Emission Measurement Issues

1991-11-01
911222
Small engines which are friendly toward the environment are needed all over the world, whether the need is expressed in terms of energy efficiency, useful engine life, health benefits for the user, or emission regulations enacted to protect a population or an ecologically-sensitive area. Progress toward the widespread application of lower-impact small engines is being made through engine design, matching of engine to equipment and task, aftertreatment technology, alternative and reformulated fuels, and improved lubricants. This paper describes three research and development projects, focused on the interrelationships of fuels, lubricants, and emissions in Otto-cycle engines, which were conducted by Southwest Research Institute. All the work reported was funded internally as part of a commitment to advance the state of small engine technology and thus enhance human utility.
Technical Paper

Emission Factors for Small Utility Engines

1991-02-01
910560
A major gap exists in available baseline emissions data on the small utility engine population between the mid-1970's and present day. As part of the input required for a standard-setting process, the California Air Resources Board has funded limited laboratory emission measurements on a number of modern small engines, both 2-stroke and 4-stroke designs. Exhaust constituents characterized in this study include total hydrocarbons, reactive hydrocarbons (RHC), methane, CO, NOx, CO2, O2, aldehydes, and particulate matter. A total of nine engines were evaluated, spanning the range from the smallest widely-used 2-strokes (about 20 cc displacement) to 4-strokes approaching 20 hp.
X