Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 1: Effect of Reducing Inlet Charge Oxygen

1996-05-01
961165
This is a first of a series of papers describing how the replacement of some of the inlet air with EGR modifies the diesel combustion process and thereby affects the exhaust emissions. This paper deals with only the reduction of oxygen in the inlet charge to the engine (dilution effect). The oxygen in the inlet charge to a direct injection diesel engine was progressively replaced by inert gases, whilst the engine speed, fuelling rate, injection timing, total mass and the specific heat capacity of the inlet charge were kept constant. The use of inert gases for oxygen replacement, rather than carbon dioxide (CO2) or water vapour normally found in EGR, ensured that the effects on combustion of dissociation of these species were excluded. In addition, the effects of oxygen replacement on ignition delay were isolated and quantified.
Technical Paper

Characterization of Diesel Particulate Emissions of Two IDI Diesel Engines Using Diesel and Kerosene Fuels

1996-05-01
961231
An old single cylinder Petter AA1 and a new four cylinder Ford 1.61 engines were operated over a wide range of steady state conditions using kerosene and diesel fuels. The two engines exhibited different trends in forming the particulate emissions. For both fuels the particulate emissions were dominated by the carbon for the old engine, and by the SOF for the new engine where the latter was characterized by its low level of emissions. The engine operating conditions also influenced the emissions of the different particulate fractions. Generally, the old engine had higher unburnt lube oil emissions as well as high survival of diesel n-alkanes and PAH in the emissions. However, in the case of kerosene and the new engine when operated both with kerosene and diesel fuel, the pyrosynthesis of these compounds was evident. Sulphates in the particulates, which originated mainly in the fuel, were shown to incorporate low levels of background from the engine deposits and the lubricating oil.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 3: Effects of Water Vapour

1997-05-01
971659
Water vapour is a main constituent of exhaust gas recirculation (EGR) in diesel engines and its influence on combustion and emissions were investigated. The following effects of the water vapour were examined experimentally: the effect of replacing part of the inlet charge oxygen (dilution effect), the effect of the higher specific heat capacity of water vapour in comparison with that of oxygen it replaces (thermal effect), the effect of dissociation of water vapour (chemical effect), as well as the overall effect of water vapour on combustion and emissions. Water vapour was introduced into the inlet charge, progressively, so that up to 3 percent of the inlet charge mass was displaced. This was equivalent to the amount of water vapour contained in 52 percent by mass of EGR for the engine operating condition tested in this work.
X