Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Further Developments on a Characteristic Time Model for NOx Emissions from Diesel Engines

1998-10-19
982460
The specific aim is to validate an engineering model for direct injection (DI) Diesel engine emissions. Characteristic times describing the controlling fluid mechanics and chemical kinetics will be employed in the model to correlate both NOx and particulate emissions. Because the model equations are algebraic, they are suitable for implementation in a phenomenological cycle simulation program, or as an emissions model option in a computational fluid dynamics code. An original premise was that earlier work on global NO chemistry based on pollutant emissions dominated by diffusion flame contributions had adequately elucidated the kinetic aspects of the model. It is shown here that this approach is not valid for modern engines. Rather, an improved two-zone flame model for NO formation/decomposition is required. Mellor et al. [1] propose such a model, but include only qualitative preliminary model validation.
Technical Paper

Multiple Injections with EGR Effects on NOx Emissions for DI Diesel Engines Analyzed Using an Engineering Model

2002-10-21
2002-01-2774
Multiple injection tests were carried out using a 1.2-liter 4-cylinder Ford DIATA (Direct Injection Aluminum Through-bolt Assembly) engine at various operating conditions. The results were simultaneous reductions in NOx and soot emissions. An engineering model based on characteristic times, with consideration of both thermal and N2O formation kinetics, is utilized to gain insight into the reasons for NOx reduction due to multiple injections. Stoichiometric combustion is assumed for NO formation. In this research, normalization and parametric studies are used to study the effects of injection timing, fuel quantity per injection pulse, and injection rate on NOx emissions. NO formation is reduced by modifications that lower stoichiometric flame temperature at the start of combustion of fuel injection pulses or decrease time spent by a fluid element in the stoichiometric zone.
Technical Paper

Skeletal Mechanism for NOx Chemistry in Diesel Engines

1998-05-04
981450
Most computational schemes and kinetic models for engine-out NOx emissions from Diesels are based on the Zeldovich or extended Zeldovich mechanism. However, at pressures typical of both the premixed and diffusion portions of the combustion process, the third-body reaction leading to the formation of N2O (O + N2 + M) becomes faster than the leading reaction in the Zeldovich mechanism (O + N2). As in gas turbines, particularly those involving lean-premixed combustor designs, NO formation in Diesels through the N2O mechanism can thus proceed more efficiently than through the traditional route. Decomposition of NO in the combustion products during the power stroke can also occur by both the reverse Zeldovich reactions and the second order step that produces N2O (2NO ® N2O + O). Based on these observations, a skeletal mechanism consisting of seven elementary reactions is used to develop a two-zone model for NOx emissions from direct injection (DI) Diesel engines.
Technical Paper

Water Injection Effects on NOx Emissions for Engines Utilizing Diffusion Flame Combustion

1997-05-01
971657
Inert injection is an often-used technique to reduce NOx emissions from engines. Here the effects of a new Mitsubishi water injection system for a direct injection (DI) Diesel engine on exhaust emissions are examined. Stoichiometric flame temperature correlations of thermal NOx emissions for conventional gas turbine combustors provide an activation energy to form NO of approximately 135 kcal/g-mol, the value for the Zeldovich mechanism with O/O2 equilibrium. Two theoretical limiting temperatures determined to bracket NOx emissions data for gas turbines are computed for the Diesel engine considered here. At low water to fuel ratios, the reductions of NOx for the DI Diesel engine are less than predicted for uniform distribution of an inert throughout the charge, but as the water to fuel ratio is increased the reductions are bounded successfully by the limiting temperatures.
Technical Paper

NOx Emissions from Direct Injection Diesel Engines with Water/Steam Dilution

1999-03-01
1999-01-0836
Although alternative NOx control schemes, such as catalysis, are promising means of reducing emissions from Diesel engines, many such methods have yet to be developed into reliable and cost-effective solutions. Consequently, NOx reduction through in-cylinder techniques remains the most widely used approach in meeting current and future emissions standards. One such common technique is the use of an inert diluent, such as water/steam or exhaust gas recirculation (EGR), introduced into the combustion chamber to reduce the peak flame temperatures associated with NO formation. Here the role of water/steam in reducing NOx emissions is analyzed in depth. In particular, two methods of water injection are studied: stratified fuel-water-fuel injection and intake manifold fumigation. In each case, the NOx emissions are modeled using a two-zone characteristic time model (CTM) based on the dominant physical and chemical subprocesses occurring in the cylinder.
X