Refine Your Search

Topic

Author

Search Results

Journal Article

Potential of Cellulose-Derived Biofuels for Soot Free Diesel Combustion

2010-04-12
2010-01-0335
Today's biofuels require large amounts of energy in the production process for the conversion from biomass into fuels with conventional properties. To reduce the amounts of energy needed, future fuels derived from biomass will have a molecular structure which is more similar to the respective feedstock. Butyl levulinate can be gained easily from levulinic acid which is produced by acid hydrolysis of cellulose. Thus, the Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of this biofuel compound, as a candidate for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. Previous investigations identified most desirable fuel properties like a reduced cetane number, an increased amount of oxygen content and a low boiling temperature for compression ignition engine conditions.
Journal Article

Influence of the Mixture Formation on the Lubrication Oil Emission of Combustion Engines

2010-04-12
2010-01-1275
Partly competing objectives, as low fuel consumption, low friction, long oil maintenance rate, and at the same time lowest exhaust emissions have to be fulfilled. Diminishing resources, continuously reduced development periods, and shortened product cycles yield detailed knowledge about oil consumption mechanisms in combustion engines to be essential. There are different ways for the lubricating oil to enter the combustion chamber: for example as blow-by gas, leakage past valve stem seals, piston rings (reverse blow-by) and evaporation from the cylinder liner wall and the combustion chamber. For a further reduction of oil consumption the investigation of these mechanisms has become more and more important. In this paper the influence of the mixture formation and the resulting fuel content in the cylinder liner wall film on the lubricant oil emission was examined.
Journal Article

Effects of LPG Fuel Formulations on Knock and Pre-Ignition Behavior of a DI SI Engine

2015-09-01
2015-01-1947
Due to their CO2 reduction potential and their high knock resistance gaseous fuels present a promising alternative for modern highly boosted spark ignition engines. Especially the direct injection of LPG reveals significant advantages. Previous studies have already shown the highest thermodynamic potential for the LPG direct injection concept and its advantages in comparison to external mixture formation systems. In the performed research study a comparison of different LPG fuels in direct injection mode shows that LPG fuels have better auto-ignition behavior than gasoline. A correlation between auto-ignition behavior and the calculated motor octane number could not be found. However, a significantly higher correlation of R2 = 0.88 - 0.99 for CR13 could be seen when using the methane number. One major challenge in order to implement the LPG direct injection concept is to ensure the liquid state of the fuel under all engine operating conditions.
Journal Article

Improving Engine Efficiency and Emission Reduction Potential of HVO by Fuel-Specific Engine Calibration in Modern Passenger Car Diesel Applications

2017-10-08
2017-01-2295
The optimization study presented herein is aimed to minimize the fuel consumption and engine-out emissions using commercially available EN15940 compatible HVO (Hydrogenated Vegetable Oil) fuel. The investigations were carried out on FEV’s 3rd generation HECS (High Efficiency Combustion System) multi-cylinder engine (1.6L, 4 Cylinder, Euro 6). Using a global DOE approach, the effects of calibration parameters on efficiency and emissions were obtained and analyzed. This was followed by a global optimization procedure to obtain a dedicated calibration for HVO. The study was aiming for efficiency improvement and it was found that at lower loads, higher fractions of low pressure EGR in combination with lower fuel injection pressures were favorable. At higher loads, a combustion center advancement, increase of injection pressure and reduced pilot injection quantities were possible without exceeding the noise and NOx levels of the baseline Diesel.
Journal Article

Future Specification of Automotive LPG Fuels for Modern Turbocharged DI SI Engines with Today’s High Pressure Fuel Pumps

2016-10-17
2016-01-2255
Liquefied Petroleum Gas direct injection (LPG DI) is believed to be the key enabler for the adaption of modern downsized gasoline engines to the usage of LPG, since LPG DI avoids the significant low end torque drop, which goes along with the application of conventional LPG port fuel injection systems to downsized gasoline DI engines, and provides higher combustion efficiencies. However, especially the high vapor pressure of C3 hydrocarbons can result in hot fuel handling issues as evaporation or even in reaching the supercritical state of LPG upstream or inside the high pressure pump (HPP). This is particularly critical under hot soak conditions. As a result of a rapid fuel density drop close to the supercritical point, the HPP is not able to keep the rail pressure constant and the engine stalls.
Journal Article

Optimization of Diesel Combustion and Emissions with Tailor-Made Fuels from Biomass

2013-09-08
2013-24-0059
In order to thoroughly investigate and improve the path from biofuel production to combustion, the Cluster of Excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Since then, a variety of fuel candidates have been investigated. In particular, 2-methyl tetrahydrofurane (2-MTHF) has shown excellent performance w.r.t. the particulate (PM) / NOx trade-off [1]. Unfortunately, the long ignition delay results in increased HC-, CO- and noise emissions. To overcome this problem, the addition of di-n-butylether (DNBE, CN ∼ 100) to 2-MTHF was analyzed. By blending these two in different volumetric shares, the effects of the different mixture formation and combustion characteristics, especially on the HC-, CO- and noise emissions, have been carefully analyzed. In addition, the overall emission performance has been compared to EN590 diesel.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

2007-04-16
2007-01-1128
The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
Technical Paper

Complex Air Path Management Systems and Necessary Controller Structures for Future High Dynamic Requirements

2009-05-13
2009-01-1616
The future worldwide emission regulations will request a drastic decrease of Diesel engine tailpipe emissions. Depending on the planned application and the real official regulations, a further strong decrease of engine out emissions is necessary, even though the utilized exhaust after-treatment systems are very powerful. To reduce NOx emissions internally, the external exhaust gas recirculation (EGR) is known as the most effective way. Due to the continuously increasing requirements regarding specific power, dynamic behavior and low emissions, future air path systems have to fulfill higher requirements and, consequently, become more and more complex, e.g. arrangements with a 2-stage turbo charging or 2-stage EGR system with different stages of cooling performance.
Technical Paper

Tailor-Made Fuels: The Potential of Oxygen Content in Fuels for Advanced Diesel Combustion Systems

2009-11-02
2009-01-2765
Fuels derived from biomass will most likely contain oxygen due to the high amount of hydrogen needed to remove oxygen in the production process. Today, alcohol fuels (e. g. ethanol) are well understood for spark ignition engines. The Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of alcohol fuels as candidates for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. The soot formation and oxidation process when using alcohol fuels in diesel engines is not yet sufficiently understood. Depending on the chain length, alcohol fuels vary in cetane number and boiling temperature. Decanol possesses a diesel-like cetane number and a boiling point in the range of the diesel boiling curve. Thus, decanol was selected as an alcohol representative to investigate the influence of the oxygen content of an alcohol on the combustion performance.
Technical Paper

A New Approach for Optimization of Mixture Formation on Gasoline DI Engines

2010-04-12
2010-01-0591
Advanced technologies such as direct injection DI, turbocharging and variable valve timing, have lead to a significant evolution of the gasoline engine with positive effects on driving pleasure, fuel consumption and emissions. Today's developments are primarily focused on the implementation of improved full load characteristics for driving performance and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbocharging and high specific power. The requirements of a relatively small cylinder displacement with high specific power and a wide flexibility of DI injection specifications lead to competing development targets and additionally to a high number of degrees of freedom during optimization. In order to successfully approach an optimum solution, FEV has evolved an advanced development methodology, which is based on the combination of simulation, optical diagnostics and engine thermodynamics testing.
Technical Paper

Investigation of Predictive Models for Application in Engine Cold-Start Behavior

2004-03-08
2004-01-0994
The modern engine development process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. It is expected that predictive simulation tools that encompass the entire powertrain can potentially improve the efficiency of the calibration process. The testing of an ECU using a HiL system requires a real-time model. Additionally, if the initial parameters of the ECU are to be defined and tested, the model has to be more accurate than is typical for ECU functional testing. It is possible to enhance the generalization capability of the simulation, with neuronal network sub-models embedded into the architecture of a physical model, while still maintaining real-time execution. This paper emphasizes the experimental investigation and physical modeling of the port fuel injected SI engine.
Technical Paper

HiL-Calibration of SI Engine Cold Start and Warm-Up Using Neural Real-Time Model

2004-03-08
2004-01-1362
The modern engine design process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. The introduction of predictive real-time simulation tools that represent the entire powertrain can likely contribute to improving the efficiency of the calibration process. Engine models, which are purely based on physical first principles, are usually not capable of real-time applications, especially if the simulation is focused on cold start and warm-up behavior. However, the initial data definition for the ECU using a Hardware-in-the-Loop (HiL)-Simulator requires a model with both real-time capability and sufficient accuracy. The use of artificial intelligence systems becomes necessary, e.g. neural networks. Methods, structures and the realization of a hybrid real-time model are presented in this paper, which combines physical and neural network models.
Technical Paper

Start-Up Behavior of Fuel Processors for PEM Fuel Cell Applications

2003-03-03
2003-01-0420
This paper focuses on start-up technology for fuel processing systems with special emphasis on gasoline fueled burners. Initially two different fuel processing systems, an autothermal reformer with preferential oxidation and a steam reformer with membrane, are introduced and their possible starting strategies are discussed. Energy consumption for preheating up to light-off temperature and the start-up time is estimated. Subsequently electrical preheating is compared with start-up burners and the different types of heat generation are rated with respect to the requirements on start-up systems. Preheating power for fuel cell propulsion systems necessarily reaches up to the magnitude of the electrical fuel cell power output. A gasoline fueled burner with thermal combustion has been build-up, which covers the required preheating power.
Technical Paper

Glow-plug Ignition of Ethanol Fuels under Diesel Engine Relevant Thermodynamic Conditions

2011-04-12
2011-01-1391
The requirement of reducing worldwide CO₂ emissions and engine pollutants are demanding an increased use of bio-fuels. Ethanol with its established production technology can contribute to this goal. However, due to its resistive auto-ignition behavior the use of ethanol-based fuels is limited to the spark-ignited gasoline combustion process. For application to the compression-ignited diesel combustion process advanced ignition systems are required. In general, ethanol offers a significant potential to improve the soot emission behavior of the diesel engine due to its oxygen content and its enhanced evaporation behavior. In this contribution the ignition behavior of ethanol and mixtures with high ethanol content is investigated in combination with advanced ignition systems with ceramic glow-plugs under diesel engine relevant thermodynamic conditions in a high pressure and temperature vessel.
Technical Paper

Optical Investigation on the Origin of Pre-Ignition in a Highly Boosted SI Engine Using Bio-Fuels

2013-04-08
2013-01-1636
Downsizing of highly-boosted spark-ignition (SI) engines is limited by pre-ignition, which may lead to extremely strong knocking and severe engine damage. Unfortunately, the concerning mechanisms are generally not yet fully understood, although several possible reasons have been suggested in previous research. The primary objective of the present paper is to investigate the influence of molecular bio-fuel structure on the locations of pre-ignition in a realistic, highly-charged SI engine at low speed by state-of-the-art optical measurements. The latter are conducted by using a high-sensitivity UV endoscope and an intensified high-speed camera. Two recently tested bio-fuels, namely tetrahydro-2-methylfuran (2-MTHF) and 2-methylfuran (2-MF), are investigated. Compared to conventional fuels, they have potential advantages in the well-to-tank balance. In addition, both neat ethanol and conventional gasoline are used as fuels.
Technical Paper

Optimization of Diesel Combustion and Emissions with Newly Derived Biogenic Alcohols

2013-10-14
2013-01-2690
Modern biofuels offer the potential to decrease engine out emissions while at the same time contributing to a reduction of greenhouse gases produced from individual mobility. In order to deeply investigate and improve the complete path from biofuel production to combustion, in 2007 the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University. Since then, a whole variety of possible fuel candidates have been identified and investigated. In particular oxygenated fuels (e.g. alcohols, furans) have proven to be beneficial regarding the particulate matter (PM)/ NOx trade-off [1, 2, 3] in diesel-type combustion. Alcohols that provide a longer ignition delay than diesel might behave even better with regard to this trade-off due to higher homogenization of the mixture. Recent studies carried out within the Cluster of Excellence have discovered new pathways to derive 1-octanol from biomass [4], which features a derived cetane number (DCN) of 39.
Technical Paper

Tailor-Made Fuels from Biomass: Influence of Molecular Structures on the Exhaust Gas Emissions of Compression Ignition Engines

2013-10-07
2013-36-0571
In order to deeply investigate and improve the complete path from biofuel production to combustion, the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Recently, new pathways have been discovered to synthesize octanol [1] and di-n-butylether (DNBE). These molecules are identical in the number of included hydrogen, oxygen and carbon atoms, but differ in the molecular structure: for octanol, the oxygen atom is at the end of the molecule, whereas for DNBE it is located in the middle. In this paper the utilization of octanol and DNBE in a state-of-the-art single cylinder diesel research engine will be discussed. The major interest has been on engine emissions (NOx, PM, HC, CO, noise) compared to conventional diesel fuel.
Technical Paper

HiL-based ECU-Calibration of SI Engine with Advanced Camshaft Variability

2006-04-03
2006-01-0613
A main focus of development in modern SI engine technology is variable valve timing, which implies a high potential of improvement regarding fuel consumption and emissions. Variable opening, period and lift of inlet and outlet valves enable numerous possibilities to alter gas exchange and combustion. However, this additional variability generates special demands on the calibration process of specific engine control devices, particularly under cold start and warm-up conditions. This paper presents procedures, based on Hardware-in-the-Loop (HiL) simulation, to support the classical calibration task efficiently. An existing approach is extended, such that a virtual combustion engine is available including additional valve timing variability. Engine models based purely on physical first principles are often not capable of real time execution. However, the definition of initial parameters for the ECU requires a model with both real time capability and sufficient accuracy.
Technical Paper

Effect of Engine Operating Parameters on Space- and Species-Resolved Measurements of Engine-Out Emissions from a Single-Cylinder Spark Ignition Engine

2019-04-02
2019-01-0745
The development and validation of detailed simulation models of in-cylinder combustion, emission formation mechanisms and reaction kinetics in the exhaust system are of crucial importance for the design of future low-emission powertrain concepts. To investigate emission formation mechanisms on one side and to create a solid basis for the validation of simulation methodologies (e.g. 3D-CFD, multi-dimensional in-cylinder models, etc.) on the other side, specific detailed measurements in the exhaust system are required. In particular, the hydrocarbon (HC) emissions are difficult to be investigated in simulation and experimentally, due to their complex composition and their post-oxidation in the exhaust system. In this work, different emission measurement devices were used to track the emission level and composition at different distances from the cylinder along the exhaust manifold, from the exhaust valve onwards.
Technical Paper

Optical Investigation of Biofuel Effects on NO and PAH Formation in Diesel-Like Jets

2015-09-06
2015-24-2485
In order to reduce engine out CO2 emissions it is a main subject to find new alternative fuels out of renewable sources. For this reason in this paper a blend out of 1-octanol and di-n-butylether and pure di-n-butylether are investigated in comparison to n-heptane as diesel-like fuel. The alternative fuels have a different combustion behavior particularly concerning important combustion parameters like ignition delay and mixture formation. Especially the formation of pollutants like nitrogen oxides in the combustion of alternative fuels is of global interest. The knowledge of the combustion behavior is important to design new engine geometries or implement a new calibration of the engine. In previous measurements in a single cylinder engine it was found out that both alternative fuels form nearly no soot emissions. For this reason now NOx is investigated optically to avoid the traditional soot NOx trade-off in diesel combustion.
X