Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Improving Engine Efficiency and Emission Reduction Potential of HVO by Fuel-Specific Engine Calibration in Modern Passenger Car Diesel Applications

2017-10-08
2017-01-2295
The optimization study presented herein is aimed to minimize the fuel consumption and engine-out emissions using commercially available EN15940 compatible HVO (Hydrogenated Vegetable Oil) fuel. The investigations were carried out on FEV’s 3rd generation HECS (High Efficiency Combustion System) multi-cylinder engine (1.6L, 4 Cylinder, Euro 6). Using a global DOE approach, the effects of calibration parameters on efficiency and emissions were obtained and analyzed. This was followed by a global optimization procedure to obtain a dedicated calibration for HVO. The study was aiming for efficiency improvement and it was found that at lower loads, higher fractions of low pressure EGR in combination with lower fuel injection pressures were favorable. At higher loads, a combustion center advancement, increase of injection pressure and reduced pilot injection quantities were possible without exceeding the noise and NOx levels of the baseline Diesel.
Journal Article

Potential of Hydrogenated Vegetable Oil (HVO) in Future High Efficiency Combustion System

2013-04-08
2013-01-1677
The limited availability of fossil fuels and the increasing environmental pollution will lead to an increased demand for sustainable biofuels. The production of bio-based diesel fuels from vegetable oils is commonly accomplished using a process known as Trans-esterification. The product of Transesterification is Fatty Acid Methyl Ester (FAME), commonly known as Biodiesel. An alternative process is Hydro-treatment of seed oils or animal waste fats to produce highly paraffinic renewable diesel fuel called Hydrogenated Vegetable Oil (HVO). Detailed investigations were carried out by the “Department of Advanced Diesel Engine Development” at FEV GmbH Aachen (Germany), to explore the potential of this biofuel compound as a candidate for future compression ignition engines.
Journal Article

Advanced Fuel Formulation Approach using Blends of Paraffinic and Oxygenated Biofuels: Analysis of Emission Reduction Potential in a High Efficiency Diesel Combustion System

2016-10-17
2016-01-2179
This work is a continuation of earlier results presented by the authors. In the current investigations the biofuels hydrogenated vegetable oil (HVO) and 1-octanol are investigated as pure components and compared to EN 590 Diesel. In a final step both biofuels are blended together in an appropriate ratio to tailor the fuels properties in order to obtain an optimal fuel for a clean combustion. The results of pure HVO indicate a significant reduction in CO-, HC- and combustion noise emissions at constant NOX levels. With regard to soot emissions, at higher part loads, the aromatic free, paraffinic composition of HVO showed a significant reduction compared to EN 590 petroleum Diesel fuel. But at lower loads the high cetane number leads to shorter ignition delays and therefore, ignition under richer conditions.
Journal Article

Utilization of HVO Fuel Properties in a High Efficiency Combustion System: Part 2: Relationship of Soot Characteristics with its Oxidation Behavior in DPF

2014-10-13
2014-01-2846
The present work is a continuation of the earlier published results by authors on the investigation of Hydrogenated Vegetable Oil (HVO) on a High Efficiency Diesel Combustion System (SAE Int. J. Fuels Lubr. Paper No. 2013-01-1677 and JSAE Paper No. 283-20145128). In order to further validate and interpret the previously published results of soot microstructure and its consequences on oxidation behavior, the test program was extended to analyze the impact of soot composition, optical properties, and physical properties such as size, concentration etc. on the oxidation behavior. The experiments were performed with pure HVO as well as with petroleum based diesel and today's biofuel (i.e. FAME) as baseline fuels. The soot samples for the different analyses were collected under constant engine operating conditions at indicated raw NOx emissions of Euro 6 level using closed loop combustion control methodology.
Technical Paper

Investigation of Insulated Exhaust Manifolds and Turbine Housings in Modern Diesel Engines for Emissions and Fuel Consumption Reduction

2016-04-05
2016-01-1003
Improvements in the efficiency of internal combustion engines has led to a reduction in exhaust gas temperatures. The simultaneous tightening of exhaust emission limits requires ever more complex emission control methods, including aftertreatment whose efficiency is crucially dependent upon the exhaust gas temperature. Double-walled (also called air-gap) exhaust manifold and turbine housing modules made from sheet metal have been used in gasoline engines since 2009. They offer the potential in modern Diesel engines to reduce both the emissions of pollutants and fuel consumption. They also offer advantages in terms of component weight and surface temperatures in comparison to cast iron components. A detailed analysis was conducted to investigate the potential advantages of insulated exhaust systems for modern diesel engines equipped with DOC and SCR coated DPF (SDPF).
Technical Paper

Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty

2011-09-11
2011-24-0176
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of carbon dioxide output in the traffic sector depict substantial requirements for the development of future diesel engines. These engines will comprise not only the mandatory diesel oxidation catalyst (DOC) and particulate filter DPF but a NOx aftertreatment system as well - at least for heavier vehicles. The oxidation catalysts as well as currently available NOx aftertreatment technologies, i.e., LNT and SCR, rely on sufficient exhaust gas temperatures to achieve a proper conversion. This is getting more and more critical due to the fact that today's and future measures for CO₂ reduction will result in further decrease of engine-out temperatures. Additionally this development has to be considered in the light of further engine electrification and hybridization scenarios.
Technical Paper

Closed Loop Combustion Control - Enabler of Future Refined Engine Performance Regarding Power, Efficiency, Emissions & NVH under Stringent Governmental Regulations

2011-09-11
2011-24-0171
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of the carbon dioxide output in the traffic sector depict substantial requirements for the global automotive industry and especially for the engine manufacturers. From the multiplicity of possible approaches and strategies for clear compliance with these demands, engine internal measures offer a large and, eventually more important, very economical potential. For example, the achievements in fuel injection technology are a measure which in the last years has contributed significantly to a notable reduction of the emissions of the modern DI Diesel engines at favorable fuel efficiency. Besides the application of modern fuel injection technology, the linked combustion control (Closed Loop Combustion Control) opens possibilities for a further optimization of the combustion process.
Technical Paper

Comparative Study to Assess the Potential of Different Exhaust Gas Aftertreatment Concepts for Diesel Powered Ultra-Light Commercial Vehicle Applications in View of Meeting BS VI Legislation

2017-01-10
2017-26-0128
Despite the trend in increased prosperity, the Indian automotive market, which is traditionally dominated by highly cost-oriented producion, is very sensitive to the price of fuels and vehicles. Due to these very specific market demands, the U-LCV (ultra-light commercial vehicle) segment with single cylinder natural aspirated Diesel engines (typical sub 650 cc displacement) is gaining immense popularity in the recent years. By moving to 2016, with the announcement of leapfrogging directly to Bharat Stage VI (BS VI) emission legislation in India, and in addition to the mandatory application of Diesel particle filters (DPF), there will be a need to implement effective NOx aftertreament systems. Due to the very low power-to-weight ratio of these particular applications, the engine operation takes place under full load conditions in a significant portion of the test cycle.
Technical Paper

Optimization of Engine Efficiency and Diesel Aftertreatment System Architecture Using an Integrated System Simulation Approach

2016-02-01
2016-28-0227
As emission regulations are becoming increasingly stringent worldwide, multiple exhaust aftertreatment devices are considered in order to minimize diesel engine tailpipe emissions. For the typical diesel applications in developing markets like India, the fuel consumption is a very decisive selling argument for customers. The total cost of ownership needs to be as low as possible. To meet these competing requirements, the aftertreatment and engines must be optimized at the same time as the performance of the one system affects the other. In state-of-the-art calibration processes, the aftertreatment systems are considered separately from the calibration of the thermodynamics. This conventional approach makes it more challenging to achieve a simultaneous optimization of the fuel consumption and tailpipe emissions under transient operating conditions.
X