Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Journal Article

Emission and Ignition Effects of Alternative Fuels at Conventional and Premixed Diesel Combustion

2010-04-12
2010-01-0870
The growing availability of different biofuels and synthetic fuels is leading to increased diversity of automotive fuels. Understanding how fuel properties affect combustion and how engine calibration strategies can compensate for variations in fuel composition is crucial for ensuring proper engine operation in this world of increased fuel diversity. This study looks at the ability to compensate for wide changes in cetane quality. Four different fuels with variations in cetane number, volatility and composition have been tested in a single cylinder engine and compared to diesel fuel. The selected operating conditions represent the entire engine map of a passenger car diesel engine. In part load the effects were investigated for conventional and premixed Diesel combustion. The results show that part load operation is especially relevant for the detection and compensation of varying fuel properties and that, depending on engine load, different control strategies have to be applied.
Technical Paper

Fuel Octane Effects in the Partially Premixed Combustion Regime in Compression Ignition Engines

2009-11-02
2009-01-2648
Previous work has showed that it may be advantageous to use fuels of lower cetane numbers compared to today's diesel fuels in compression ignition engines. The benefits come from the longer ignition delays that these fuels have. There is more time available for the fuel and air to mix before combustion starts which is favourable for achieving low emissions of NOx and smoke though premixing usually leads to higher emissions of CO and unburned hydrocarbons. In the present work, operation of a single-cylinder light-duty compression ignition engine on four different fuels of different octane numbers, in the gasoline boiling range, is compared to running on a diesel fuel. The gasoline fuels have research octane numbers (RON) of 91, 84, 78, and 72. These are compared at a low load/low speed condition (4 bar IMEP / 1200 rpm) in SOI sweeps as well as at a higher load and speeds (10 bar IMEP / 2000 and 3000 rpm) in EGR sweeps.
Technical Paper

Understanding the Effect of DISI Injector Deposits on Vehicle Performance

2012-04-16
2012-01-0391
Combustion in direct injection spark ignition (DISI) engines is strongly influenced by the in-cylinder charge motion. The charge motion depends both on the injection strategy as well as the geometry of the combustion chamber/air intake system and the physical location of the injectors (side mounted vs. centrally mounted). For boosted and downsized DISI engines, many manufacturers are favouring a single late injection or a split injection strategy. This has the advantage of creating high levels of turbulence which leads to faster combustion and improved thermodynamic efficiency. Furthermore the charge cooling offers enhanced knock resistance, thereby allowing more spark advance. The calibration of such engines is critical: the prize of greater thermodynamic efficiency must be balanced against the risks of charge inhomogeneity, namely excessive particulate emissions and poor drivability.
Technical Paper

The Effects of Octane, Sensitivity and K on the Performance and Fuel Economy of a Direct Injection Spark Ignition Vehicle

2014-04-01
2014-01-1216
This study investigates the effects of octane quality on the performance, i.e., acceleration and power, and fuel economy (FE) of one late model US vehicle, which is powered by a small displacement, turbocharged, gasoline direct injection (GDI) engine. The relative importance of the gasoline parameters Research and Motor Octane Number (RON and MON) in meeting the octane requirement of this engine to run at an optimum spark timing for the given demand was considered by evaluating the octane index (OI), where OI = (1-K) RON + K MON and K is a constant depending on engine design and operating conditions. Over wide open throttle (WOT) accelerations, the average K of this Pontiac Solstice was determined as −0.75, whereby a lower MON would give a higher OI, a higher knock resistance and better performance.
X