Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

LPG - Gasoline Bi-Fuel Engine Development for Compliance to BS-III Norms

2007-01-17
2007-26-031
The world is facing a twin crisis of environmental degradation and fossil fuel depletion. Alternative fuels are seems to be a promising solution for low exhaust emissions. Liquefied Petroleum Gas (LPG) is a prominent alternative fuel with well developed distributed infrastructure and increasing number of Gasoline engines are now being converted to run on LPG considering the fuel economy and low exhaust emissions. This paper describes the bi-fuel (LPG/Gasoline) concept on a single cylinder engine. Air cooled Direct Injection (DI) diesel engine converted to operate on gasoline engine with electronic ignition system and it is having feature to change the spark ignition timing w.r.t. speed. The compression ratio was also reduced suitable to SI operation. CFD analysis was performed to review and subsequently to increase the cooling capacity of the engine.
Technical Paper

Development of BS-III CNG Engine for a Light Commercial Vehicle

2007-01-17
2007-26-028
Environmental degradation is on the rise due to the increased motor vehicle population. One of the strategies adopted to curb deteriorating environmental quality is the use of alternative fuels like Ethanol, Compressed natural gas and Liquefied Petroleum Gas. Natural gas is the world's most plentiful combustible fuel, abundantly available in all the continents. This naturally occurring fuel requires little or no treatment prior to use as compared to liquid petroleum products. Natural gas is also the lowest costing fuel. The use of CNG as an automotive-fuel results in significant reduction in the level of vehicular pollutants CO, HC, NOx, SOx, Pb and PM [1, 2, 3 and 4]. Additionally, the use of CNG results in reduction in the emissions of greenhouse gases (CO2), owing to the lower Carbon-to-Hydrogen ratio of the methane (CH4), as compared to other hydrocarbon fuels [5, 6 and 7].
Technical Paper

Homogeneous Charge Compression Ignition (HCCI): A New Concept for Near Zero NOx and Particulate Matter (PM) from Diesel Engine Combustion

2007-01-17
2007-26-020
This paper reviews the current research work on Homogeneous Charge Compression Ignition (HCCI) concept for diesel engines to meet future tightened emission norms. Heavy duty diesel engines are facing conflict between the goal of emission reduction and optimization of fuel consumption. In response to social demands and progressively strengthened emission regulations, diesel engines have been made cleaner through various means such as the combustion chamber, high pressure fuel injection, and turbocharger. In recent years, high pressure fuel injection has been considered as an effective method to reduce Particulate Matter (PM) by improving atomization and better air utilization, however, resulting in an increased Nitric Oxides (NOx) formation due to high temperature combustion. To fulfill future tightened emission norms, further developments on diesel engine technology and combustion improvements are required for simultaneous reduction of NOx and PM emissions as opposed to a trade-off.
Technical Paper

Development of BS-III CNG Engine for Heavy Commercial Vehicle

2009-01-21
2009-26-0038
In this paper, the results obtained during the optimization of the dedicated CNG 6-Cylinder naturally aspirated engine are described with the optimization strategy. Most of the diesel engines after conversion to CNG engines are having high valve overlap leading to high HC emission along with less fuel economy and high swirl leads to reduced volumetric efficiency. These issues were examined in detail and experimentation was carried out to assess the effect of low swirl thereby resulting in high flow leading to increase in volumetric efficiency and reduced emissions. The engine variables optimized for CNG operation were the engine compression ratio, ignition timing, spark plug selection, catalytic converter loading, design of first stage regulator with improved heating circuit and second stage pressure regulators, mixer venturi size, power screw setting, and intake/ exhaust system geometry.
Technical Paper

Development of CNG Injection Engine to Meet Future Euro-V Emission Norms for LCV Applications

2011-01-19
2011-26-0002
Compressed Natural Gas (CNG) is now looked upon as a leading renewable fuel for vehicles in INDIA due to mounting foreign exchange expenditure to import crude petroleum. Impending stringent emissions regulations for diesel engines, specifically exhaust particulate emissions have caused engine manufactures to once again examine the potential of alternative fuels. Much interest has centred on CNG due to its potential for low particulate and hydrocarbon based emissions and adulteration hostile nature. Significant amount of research and development work is being undertaken in INDIA to investigate various aspects of CNG utilization in different types of engines. This paper discusses the methodology for conversion of a diesel engine to dedicated CNG engine and to make the engine to meet EURO-V norms. The primary modifications are made on the piston, cylinder head, intake manifold, throttle body adaptation and exhaust system.
Technical Paper

Development of Three Cylinder CNG Engine for LCV Application

2013-01-09
2013-26-0009
Compressed Natural Gas (CNG) engine has proved itself to be worthy replacement for diesel in heavy commercial and passenger transport application all over the world. In India, infrastructure development of CNG distribution and stringent emission regulations have increased the interest shown by Original Equipment Manufacturers (OEM) to concentrate to development of CNG vehicles in every segment. Indian cities are fighting pollution due to high vehicle density and since contribution of light commercial vehicles in intra city application is significant, application of dedicated CNG vehicle has been made mandatory. This paper discusses the development of dedicated CNG engine using injection technology meeting the upcoming BS-IV norms. The primary modifications made are in the cylinder head, piston, intake and exhaust systems. The engine being developed for commercial application, the best in class fuel economy is of prime focus.
Technical Paper

Development of Two Stroke LPG Three Wheeler in Compliance with BS-III Norms

2013-01-09
2013-26-0008
In recent years the Government of India has supported the use of Liquified Petrolium Gas (LPG) in public and private vehicles. One of the ways to reduce emission is use of alternative fuels. Among alternative fuels, LPG is one of the most promising mainly because of its low exhaust emissions. The papers about LPG used in three wheeler, cars for SI or CI converted to SI engines had been published extensively in the last two decades. The applications of LPG to bi-fuel or single fuel engines are tried widely at this time. But the extensive study of LPG for small SI single cylinder two stroke engine of three wheeler two stroke engine is not reported in depth. This paper describes development of bi-fuel (LPG/Gasoline) concept of a single air cooled 200 CC single cylinder two stroke engine for three wheeler application.
Technical Paper

Development of Environment Friendly Diesel-CNG Dual Fuel Engine for Heavy Duty Vehicle Application in India

2013-01-09
2013-26-0015
A duel fuel diesel engine is a diesel engine fitted with a dual fuel conversion kit to enable use of clean burning alternative fuel like compressed natural gas. Dual fuel engines have number of potential advantages like fuel flexibility, lower emissions, higher compression ratio, better efficiency and easy conversion of existing diesel engines without major hardware modifications. In view of energy depletion and environmental pollution, dual fuel technology has caught attention of researchers as a viable technology keeping in mind the increased availability of fuels like Compresed Natural Gas (CNG). It is an ecological friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion. Traditionally dual fuel technology has been popular for large engines like marine, locomotive and stationery engines. However its use for automotive engines has been limited in the past due to constraints of limited supply of alternative fuels.
Technical Paper

Literature Review and Simulation of Dual Fuel Diesel-CNG Engines

2011-01-19
2011-26-0001
Dual fuel operating strategy offers great opportunity to reduce emissions like particulate matter and NOx from compression ignition engine and use of clearer fuels like natural gas. Dual-fuel engines have number of potential advantages like fuel flexibility, lower emissions, higher compression ratio, better efficiency and easy conversion of existing diesel engines without major hardware modifications. In view of energy depletion and environmental pollution, dual-fuel technology has caught attention of researchers. It is an ecological and efficient combustion technology. This paper summarizes a review of recent research on dual-fuel technology and future scope of research. Paper also throws light on present limitations and drawbacks of dual-fuel engines and proposed methods to overcome these drawbacks. A parametric study of different engine-operating variables affecting performance of diesel-CNG dual-fuel engines vis-à-vis base diesel operation is also summarized here.
X