Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Technical Paper

Multi-Species Laser-Based Imaging Measurements in a Diesel Spray

2004-06-08
2004-01-1917
Multi-species laser based imaging measurements have been carried out in a reacting Diesel spray in order to provide a detailed data base for model development and validation. In a high-pressure high-temperature spray chamber the measurements addressed the fuel vapor concentration, ignition and flame development and the soot formation. The fuel vapor distribution was measured quantitatively by Rayleigh scattering and compared to measurements by tracer laser-induced fluorescence. Soot volume fractions were observed by laser-induced incandescence. Fuel vapor and soot distributions were measured simultaneously and provide insight in the ignition and pollutant formation process. Specific digital image processing algorithms were developed to correct for beam steering and laser attenuation.
Technical Paper

Effects of Bio Diesel Injection in a DI Diesel Engine on Gaseous and Particulate Emission

2005-05-11
2005-01-2204
Vehicles powered by Diesel engines with direct injection contribute to a significant reduction of fuel consumption and CO2 emission. The particulate and gaseous emissions of Diesel engine are of major concern. In order to comply with future legal limits, further developments for the reduction of exhaust gas emissions are required. This work explores the effect of fatty acid methyl ester (FAME) as bio fuel on the emission characteristics of a Diesel engine. The experiments were performed with various fuel combinations such as FAME, FAME/Diesel blends, and water/FAME/Diesel emulsions, which were directly injected into the combustion chamber of a Diesel engine. Due to the complexity of the Diesel engine, several operating parameters were varied to study their influence on the pollutant emissions. The experiments have proved that FAME combustion leads to a significantly reduction of the CO, HC and particle matter compared to Diesel combustion.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
Technical Paper

Quantitative Laser Diagnostic Studies of the NO Distribution in a DI Diesel Engine with PLN and CR Injection Systems

2001-09-24
2001-01-3500
The NO distribution in a directly-injected Diesel engine with realistic combustion chamber geometry was investigated with laser-induced fluorescence (LIF) imaging with KrF excimer laser excitation. The highest possible level of selectivity has been ensured using spectrally resolved LIF investigations inside the Diesel engine. To minimize interference from both, oxygen and polycyclic aromatic hydrocarbon (PAH) LIF the NO signal was detected around 237 nm, blue-shifted compared to the excitation wavelength resulting in a background contribution below 10% at the earliest detection timing possible in the engine under study (20°ca after top dead center, TDC). The in-cylinder NO LIF intensities were compared for different injection systems and operating conditions and correlated to variations in pressure traces and soot temperature measurements.
X