Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Model-based optimization methods of combined DPF+SCR Systems

2007-09-16
2007-24-0098
The design of integrated exhaust lines that combine particulate and NOx emission control is a multidimensional optimization problem. The present paper demonstrates the use of an exhaust system simulation platform which is composed of well-established multidimensional mathematical models for the transient thermal and chemical phenomena in DOC, DPF and SCR systems as well as connecting pipe heat transfer effects. The analysis is focused on the European Driving Cycle conditions. Illustrative examples on complete driving cycle simulations with and without forced regeneration events are presented for alternative design approaches. The results illustrate the importance of DOC and DPF heat capacity effects and connecting pipe heat losses on the SCR performance. The possibility of combining DPF and SCR functionality on a single wall-flow substrate is studied.
Technical Paper

Computer Aided Engineering in the Design of Catalytically Assisted Trap Systems

1997-02-24
970472
The design of a diesel particulate trap system to fit a specific vehicular application requires significant expenditure, due to the high degree of interaction between the vehicle operation and trap behavior. The assistance of modeling in the design process is already well established. This paper presents the basic principles of a Computer Aided Engineering methodology aimed to assist the selection of the basic parameters of a Diesel Particulate Trap System by reducing the number of the necessary experimental tests. The computational modules currently supporting the CAE methodology are based on fundamental mathematical models, incorporating a small number of semi-empirical relations derived by experimental data on trap loading and catalytic regeneration, exhaust system heat transfer and trap backpressure effect on fuel consumption.
X