Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion

2008-10-06
2008-01-2405
Two single-cylinder diesel engines were optimised for advanced combustion performance by means of practical and cumulative hardware enhancements that are likely to be used to meet Euro 5 and 6 emissions limits and beyond. These enhancements included high fuel injection pressures, high EGR levels and charge cooling, increased swirl, and a fixed combustion phasing, providing low engine-out emissions of NOx and PM with engine efficiencies equivalent to today's diesel engines. These combustion conditions approach those of Homogeneous Charge Compression Ignition (HCCI), especially at the lower part-load operating points. Four fuels exhibiting a range of ignition quality, volatility, and aromatics contents were used to evaluate the performance of these hardware enhancements on engine-out emissions, performance, and noise levels.
Technical Paper

Effect of Octane Number on the Performance of Euro 5 and Euro 6 Gasoline Passenger Cars

2017-03-28
2017-01-0811
Research Octane Number (RON) and Motor Octane Number (MON) are used to describe gasoline combustion which describe antiknock performance under different conditions. Recent literature suggests that MON is less important than RON in modern cars and a relaxation in the MON specification could improve vehicle performance. At the same time, for the same octane number change, increasing RON appears to provide more benefit to engine power and acceleration than reducing MON. Some workers have advocated the use of an octane index (OI) which incorporates both parameters instead of either RON or MON to give an indication of gasoline knock resistance. Previous Concawe work investigated the effect of RON and MON on the power and acceleration performance of two Euro 4 gasoline passenger cars during an especially-designed acceleration test cycle.
Technical Paper

Exhaust Particulate Size Distribution: Vehicle and Fuel Influences in Light Duty Vehicles

1996-10-01
961980
Particle emissions from vehicles are currently under close scrutiny with respect to their contribution to ambient air quality relative to other sources. Small particles, less than 10 μm, referred to as PM10, have been linked to various health issues. In this study, tests have been performed on European diesel light duty vehicles using a range of production diesel fuels. Tests were also performed on two gasoline passenger cars for comparison. Measurements were made of exhaust particle size distribution and number, as well as mass emissions using the legislated filter paper method. The results showed that most of the particles emitted were very small, with median size of the order 100 nanometres (nm). The median particle size was insensitive to changes in fuel, vehicle or operating condition. Measurements of particle number broadly correlated with particle mass emissions, and ranked fuels and vehicle types in the same order.
X