Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Particle Matter Index and Fuel Wall-wetting Relations on Stochastic Pre-ignition

2021-09-21
2021-01-1163
This work explores the effect of the particle matter index (PMI) and aromatic content on fuel wall impingement associated with stochastic pre-ignition (SPI). Statically significant measurements of SPI rates are directly coupled with laser induced florescence (LIF) measurements of fuel dilution from spray-linear impingement. Literature suggests that PMI is could be correlated with the number of SPI events, but the root cause(s) of PMI and SPI are directly causational or are a predicator of SPI. Three fuels have been used in this study with 3 different PMI and two different aromatic contents. The fuels are direct injected at two different injection timings, an earlier injection timing which initially targets the piston crown, 310°CA bTDC, and a later injection timing that the liner, 220°CA bTDC start of injection timings (SOI) respectively. The earlier 310 SOI injection increases soot, whereas the later 220°CA SOI targets the liner and increases wall-wetting.
Technical Paper

In Situ Laser Induced Florescence Measurements of Fuel Dilution from Low Load to Stochastic Pre Ignition Prone Conditions

2021-04-06
2021-01-0489
This work employs a novel laser induced fluorescence (LIF) diagnostic to measure fuel dilution in a running single cylinder research engine operated at stochastic pre ignition (SPI) and non-SPI prone conditions. Measurements of LIF based fuel dilution are quantified over a range of engine loads and fuel injection timings for two fuels. The in situ LIF measurements of fuel/lubricant interactions illustrate regions of increased fuel dilution from fuel-wall interactions and is believed to be a fundamental underpinning to generating top ring zone liquid conditions conducive to SPI. A novel level of dye doped in the fuel, between 50 to 500 ppm was used as the fluorescence source, at engine operating speed of 2000r/min from 5 to 18 bar of IMEPg injection timings was swept for two fuels of varying volatility.
Journal Article

EGR Dilution and Fuel Property Effects on High-Efficiency Spark-Ignition Flames

2021-04-06
2021-01-0483
Modern spark ignition internal combustion engines rely on fast combustion rates and high dilution to achieve high brake thermal efficiencies. To accomplish this, new engine designs have moved towards increased tumble ratios and stroke-to-bore ratios. Increased tumble ratios correlate positively with increases in turbulent kinetic energy and improved fuel and residual gas mixing, all of which favor faster and more efficient combustion. Longer stroke-to-bore ratios allow higher geometric compression ratios and use of late intake valve closing to control peak compression pressures and temperatures. The addition of dilution to improve efficiency is limited by the resulting increase in combustion instabilities manifested by cycle-to-cycle variability.
X