Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vision Based Surface Roughness Characterization of Flat Surfaces Machined with EDM

2019-10-11
2019-28-0148
Surface roughness measurement is an important one in any manufacturing next to dimensions. In this investigation, a vision system and image processing tools were used to develop reliable surface roughness characterization technique for Electrical Discharge Machined surfaces. A CMOS camera with red LED light source were used for capturing images of EDMed surfaces. A separate signal vector generated for all the images from its image pixel intensity matrices. The mean, skewness and kurtosis were obtained from the signal vector. The mean, skewness and kurtosis of the images signal vector correlates very well with the stylus measured hybrid roughness parameters Rda and Rdq. Hence the technique may be preferred for online surface roughness characterization of Electrical Discharge Machined (EDMed) surfaces.
Technical Paper

Virtual Development of System Architecture for Hybrid Electric -Fuel Cell Light Commercial Vehicle Application

2015-01-14
2015-26-0114
For zero tail pipe emission transportation, fuel cell technology is the best available option for replacing commercial IC engines. Worldwide lot of research work is going on in development of fuel cell vehicles. This work deals with the virtual development of system architecture for hybrid electric - fuel cell light commercial vehicle. The goal of this research work is to virtually design, model and convert an existing LCV model in to a hybrid electric fuel cell vehicle for the same performance and better efficiencies with zero tail pipe emissions. A unique fuel cell management system is developed and used for obtaining better efficiencies. A mathematical model of the vehicle is developed using GT-Drive which tracks the energy flow and fuel usage within the vehicle drivetrain. The vehicle is tested on chassis dynamometer to provide data for validation of the mathematical model. Model results and vehicle data show good correlation when validated.
Technical Paper

Use of Software/ Hardware-in-Loop Technique for Development of Semi-Active Suspension

2015-01-14
2015-26-0007
A vehicle's suspension system is the basic component which decides its dynamic performance. It is designed to separate the vehicle body and its passengers or payload from vibrations arising due to road disturbances, at the same time to ensure that the tires stay in adequate contact with the road surface. Challenges in suspension design many a time's leads in a compromise between the conflicting demands of ride comfort and road holding. Vehicles having soft suspension isolate the vehicle body from the higher frequencies in suspension but reduce the ability of the dampers to control the wheel movements which leads to poor road holding. Conversely, hard suspension provides more road holding but transmits more of the suspension movement to the body; in turn provide a less comfortable ride. The development of active/ semi active suspension has addressed both these needs and provides optimum level of ride comfort and road holding which results in the safety and driving pleasure.
Technical Paper

Use of Non Linear Analysis in Powertrain Design for Prediction of Cylinder Bore Distortion, Design Changes for Reduction along with Experimental Validation

2015-01-14
2015-26-0202
The work presented in this paper deals with the use of non-linear FEA simulation in powertrain development. Prediction of cylinder bore distortion early in the design stage significantly affects overall performance of engine as bore distortion directly affects oil consumption, blowby and emission. The paper presents a methodology for predicting bore distortion with an objective of achieving improved performance of powertrain. For this purpose detailed Finite Element Model of Engine Assembly was prepared, nonlinear interaction between powertrain mating parts was captured by defining contacts, physical behaviour of gasket was captured through experimental testing by extracting loading and unloading pressure closure curve and the same data was used as an input for defining gasket nonlinear properties. Physical assembly sequence was captured by carrying out sequential analysis.
Technical Paper

Turning of Inconel 825 with Coated Carbide Tool Applying Vegetable-Based Cutting Fluid Mixed with CuO, Al2O3 and CNT Nanoparticles by MQL

2019-10-11
2019-28-0060
Inconel 825 is nickel (Ni)-iron (Fe)-chromium (Cr) alloy with additions of copper (Cu), molybdenum (Mo), and titanium (Ti). The alloy has excellent resistance to corrosion and is often the most cost-effective alloy in sulphuric acid piping vessels and chemical process equipment. No attempt of applying MQL with three nanofluids was reported conferring to the works accessed. The present study is focused on evaluating the effect of the addition of three nanoparticles (CuO, Al2O3, and CNT) in vegetable oil applied by MQL mode during turning of Inconel 825 with coated carbide tool. Cutting force, surface roughness, and tool wear are evaluated. The results showed that the addition of nCNT substantially improved the machining performance and smaller flank the tool edge, while the adhesion and abrasion are observed as wear mechanism and better results are obtained at 0.5% of nCNT+ vegetable oil to produce the lowest values.
Technical Paper

Topology Optimisation of Brake Caliper

2020-10-05
2020-01-1620
The objective of the research is to develop a lightweight yet stiff, 2 piston fixed brake caliper which can be used in formula student race car. To make a race car, its components need to be lighter. To stop a car with minimum stopping distance, it needs to have a sophisticated braking system with well-designed components. The designing of the caliper is carried out on the Altair Inspire software. The topology optimisation algorithm is used to minimise the weight of the caliper without compromising the stiffness. The structural analysis is also carried out on the Altair Inspire. The caliper is also tested for fatigue failure using Ansys.
Technical Paper

The Generation of Cyclic Blockloading Test Profiles from Rainflow Histograms

1992-02-01
920664
A numerical method for generating a blockloading profile from a rainflow histogram is described. Unlike previous techniques, this method produces a blockloading profile which, when rainflow-counted, yields a rainflow histogram identical to the original. When implemented with modern data acquisition and signal-processing techniques, this generation method provides a means of developing blockloading test profiles which are correlated with actual service data. This key benefit elevates existing simple testing systems as useful and productive tools despite the emrgence of more complex testing systems.
Technical Paper

The Development of Tools for the Automatic Extraction of Desired Information from Large Amounts of Engineering Data

2001-03-05
2001-01-0707
Product development processes generate large quantities of experimental and analytical data. The data evaluation process is usually quite lengthy since the data needs to be extracted from a large number of individual output files and arranged in suitable formats before they can be compared. When the data quantity grows extremely large, manual extraction cannot be done in a limited timeframe. This paper describes a set of tools developed by MTS engineers to automatically extract the desired information from a large number of files and perform data post-processing. The tools greatly improved both speed and accuracy of the evaluation process during the development of a sound quality-based end-of-line inspection system for seat tracks [1]. It allowed engineers to quickly gather a comprehensive understanding of the relative importance of individual design parameters and of their correlation to the subjective perception of the sound quality of the seat track.
Technical Paper

Tactile Sensor Array Design for Triple Seat Detection and Control

2016-02-01
2016-28-0258
In the field of automotive if a vehicle is designed for a particular per person riding capacity considering the aspects of safety, design and power exceeding those limits puts the driver and pillion riders at considerable risk. With a step ahead in this paper we are trying to detect and limit the number of persons sitting on two wheeler. As per the traffic rules in India the maximum number of persons cannot exceed two, apart from the driver only one pillion rider can be carried in behind while driving. Despite of the ban, driver carries more than a single person. Two Pillion riding is also a root of a lot of accidents happening in two wheelers. To make the detection process effective, robust and cost effective a new sensor design was to be put forward. There is no sensor available that could detect the differential load over the larger area at effective cost. To cater to this problem Bubble based tactile based sensors were developed and checked for this application.
Technical Paper

Surface Modification of Aluminium Alloy 5083 Reinforced with Cr2O3/TiO2 by Friction Stir Process

2019-10-11
2019-28-0179
The surface properties have a vital role in the overall performance of the parts like brake shoe pad and other frame system. The mechanical and residual stress measurements of aluminium alloy 5083 were investigated on friction stir processed plates using the reinforcements of chromium oxide (Cr2O3) and titanium dioxide (TiO2) separately as well as combination of these powders. A comparative study was made to analyze the effects of reinforcements, tool type (cylindrical and threaded), parameters and the volume fraction of the reinforcements. The mechanical properties such as surface hardness and residual stress of the friction stir processed specimens were investigated. The experimental results shows that there was a significant increase in surface hardness (118 HRC) as well as a decrease in residual stress compare to the base metal. This study also reveals that the threaded tool with a reinforcement of Cr2O3 and TiO2 reflected better mechanical properties than the cylindrical tool.
Technical Paper

Study on Effect of Laser Peening on Inconel 718 Produced by DMLS Technique

2019-10-11
2019-28-0146
In Additive manufacturing, Direct Metal Laser Sintering (DMLS) is a rapid manufacturing technique used for manufacturing of functional component. Finely powered metal is melted by using high-energy fiber laser, by Island principle strategy that produces mechanically and thermally stable metallic component with reduced stresses, thermal gradients and at high precision. Inconel is an austenitic chromium nickel-based superalloy often used in the applications which require high strength and temperature resistant. It can retain its properties at high temperature. An attempt is made to examine the effect of laser shot peening (LSP) on DMLS Inconel 718 sample. Microstructure shows elliptical shaped structure and formation of new grain boundaries. The surface roughness of the material has been increased due to the effect of laser shock pulse and ablative nature. Macro hardness increased to 13% on the surface.
Technical Paper

Studies on Metallurgical and Mechanical Properties of Plasma Arc Welded Aerospace 80A Grade Alloy

2020-09-25
2020-28-0466
The current research work scrutinized the influence of plasma arc in the metallurgical and mechanical behavior of Nimonic 80A weldment. Defect free weld bead of 6 mm thickness was achieved in a single pass through plasma arc welding. The microstructure of weldment is decorated with cellular dendritic structure at the center and at the weld interface region columnar dendritic structure was observed. Metallurgical analysis showed the Cr and Ti secondary precipitates in the interdendritic region of the WZ. The existence of M23C6 and Cr2Ti were observed through the X-ray diffraction analysis. Both tensile test and microhardness test were conducted to study the mechanical properties of weldment. The result concluded that both the strength and ductility inferior than base metal and the hardness of the weld bead is similar to that of BMl.
Technical Paper

Stress and Model Analysis of Upper and Lower Bolster Components of Molten Steel Transfer Vehicle

2019-10-11
2019-28-0119
The transportation of hot metal from blast furnaces to melting shops is carried out by molten steel transfer vehicle such as Torpedo ladle car in the steel plants. In need to design Torpedo ladle car within size limitation, capacity requirement and withstanding the impact, static, thermal shock and abrasion conditions, structural analysis is essential for validation. In this paper, stress and model analysis for upper and lower bolsters of Torpedo Ladle Car is carried out. The components are modelled in CAD and analysed using finite element method using software with the required boundary conditions. The results of structural analysis of bolster components are presented and discussed. The results shows that the deflection at the centre of upper and lower bolster was due to bending and applied load. The modal analysis predicted the natural frequencies by using block lanczos method.
Technical Paper

Simulation Based Approach for FIS Configuration Selection

2011-10-06
2011-28-0132
Environmental pollution is of great concern; hence the emission norms for the diesel engines are made more stringent. The purpose of this work is to develop a process to optimize the FIS parameters and select a most suitable FIS by simulation to meet the target emissions. During the combustion optimization exercise of diesel engine, different hardware combinations like injector, HPP etc are matched through testing to achieve the required performance and emissions. The process requires the real testing of the engine on engine dynamometer with various hardware combinations, which is expensive and time consuming. A simulation model of diesel FIS is constructed using ‘AVL Hydsim’. The model is validated by comparing the predicted and the experimental results. The validated model is used for further work. Critical parameters were listed based on the sensitivity analysis on the base model.
Technical Paper

Sensor Perception and Motion Planning for an Autonomous Material Handling Vehicle

2019-10-22
2019-01-2611
The ground mobile robotics study is structured on the two pivotal members namely Sensor Perception and Motion Planning. Sensor perception or Exteroception comprises the ability of measurement of the layout of the environment relative to vehicle's frame of reference which is a necessity for the implementation of safe navigation towards the goal destination in an unstructured environment. Environment scanning has played a significant role in mobile robots application to investigate the unexplored environment in the sector of defence while transporting and handling material in warehouse and hospitals. Motion Planning is a conjunction of analyzing the sensor's information while being able to plan the route from starting point to the target destination. In this paper, a 3600 2-D LiDAR is used to capture the spatial information of the surrounding, the scanning results are presented in a local map and global map.
Technical Paper

SIZE INDIA- Anthropometric Size Measurement of Indian Driving Population

2011-01-19
2011-26-0108
Anthropometric data of a country is vital database for automotive design and other design applications. It is also an important parameter in population studies. Most developed countries have invested resources over the years to develop such a database and this information is accessed by many OEMs and major Design Houses. However, an updated and comprehensive Anthropometry of Indian Population is largely unknown. In the past, a few institutions have done projects to bring out a picture of the Indian Anthropometry. However, keeping in view the rapid industrialization and increase of India-specific designs which require an access to latest Anthropometric database, the project “SIZE INDIA” has been initiated. For the first time in India, a state of the art 3D Whole body scanner technology has been used and thereby large volume of data has been generated in a very short span of time.
Technical Paper

Racing Motorcycle Design Process Using Physical and Virtual Testing Methods

2000-11-13
2000-01-3576
Recently, the use of laboratory-based physical prototype testing as well as the design of virtual models and virtual test equipment has accelerated the pace and quality of racing vehicle development. In particular, the combined use of both virtual and physical testing, when correlated to racetrack improvements, yields a powerful development tool(1), (2),(3). In this study, we applied these techniques from the first stages of the design of a unique Grand Prix racing motorcycle. First, a wire-frame CAD model, then a parametric CAD solid model of the motorcycle was created after preliminary calculations specified the approximate design of structural elements. Subsequently, a virtual dynamic model was created and subjected to a variety of inputs, including sine sweeps, shaped white noise and simulated road time-histories. Loads and other dynamic responses were measured on the virtual model, so that it's design could then be optimized to yield acceptable performance and durability.
Technical Paper

Prediction of Tyre Dynamic Behaviour for NVH and its Experimental Validation in Anechoic Chamber

2021-09-22
2021-26-0303
In present scenario, tyre industry is more focused on providing maximum extent of NVH comfort to passengers by improvising the tyre design. Noise contribution from the tyres is classified in to three regions, viz., structure-borne (tyre vibrations), air-borne (tread pattern) and cavity noise (air cavity). In general, a Finite Element (FE) model of tyre provides an inherent advantage of analyzing tyre dynamic behavior. In this paper, an attempt was made to develop a three-dimensional FE tyre model and validate the same through experimental approach. The CAD Model of the tyre was generated through 3D image scanning process. Material property extraction of tyre was carried out by Universal Testing Machine (UTM) to generate Finite Element (FE) model. For validation of tyre FE model, Experimental Modal Analysis (EMA) and Noise Transfer Function (NTF) were conducted.
Technical Paper

Prediction of Thermal Comfort Inside a Midibus Passenger Cabin Using CFD and Its Experimental Validation

2015-01-14
2015-26-0210
This paper presents a methodology for predicting thermal comfort inside Midibus cabin with an objective to modify the Heating, Ventilation and Air Conditioning (HVAC) duct design and parametric optimization in order to have improved thermal comfort of occupant. For this purpose the bus cavity is extracted from baseline CAD model including fully seated manikins with various seating positions. Solar Load has been considered in the computational model and passenger heat load is considered as per BSR/ASHRAE 55-1992R standard. CFD simulation predicted the air temperature and velocity distribution inside passenger cabin of the baseline model. The experimental measurements have been carried out as per the guidelines set in APTA-BT-RP-003-07 standard. The results obtained from CFD and Experimental test were analysed as per EVS EN ISO7730 standard and calculated occupant comfort in terms of thermal comfort parameters like Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD).
Technical Paper

Predicting and Optimizing CNG Vehicle Performance on Chassis Dynamometer through 1D Simulation by using Vehicle Performance Algorithm

2015-01-14
2015-26-0059
The paper deals with the simulation of a Light Commercial Vehicle (LCV) using vehicle performance algorithms. This method speeds up the product development process. Also by using these kind of methodology in vehicle simulation there is much noticeable reduction in cost of testing. The simulation model is used for parametric studies of the vehicle and also to attain objectives such as to optimize transmission ratio, full load acceleration, maximum tractive force, gradient performance, fuel consumption and the exhaust emission. In this case study, simulation model of a CNG, LCV is used to analyze the performances similar to that done in a chassis dynamometer. The simulation leads to the prediction and evaluation of various parameters such as fuel consumption, exhaust emissions, full load acceleration, gradient performance & maximum tractive effort for Indian Driving Cycle.
X