Refine Your Search

Topic

Author

Search Results

Journal Article

Turbocharger Noise Quality Parameters for Efficient TC Noise Assessment and Refinement

2016-06-15
2016-01-1817
Due to more challenging future emission legislations and the trend towards downsizing, the number of turbocharged (TC) engines, especially petrol engines, is steadily increasing. The usage of TC has high risk to cause different noise phenomena apparent in the vehicle interior which are often perceived as annoying for the passengers. In order to further improve consideration of TC topics in the development, objective judgment and monitoring of TC noise issues is of high importance. Therefore, objective parameters and corresponding tools that are especially focusing on TC noise phenomena have to be developed. One main target of these tools is to deliver an objective TC assessment in an efficient way and with minimum additional effort. Application of the criteria presented in this publication therefore allows acoustic engineers to judge the NVH behavior and annoyance of the TC with respect to its vehicle interior noise contribution.
Technical Paper

Thermal Simulation of High-Speed EV Transmission Bearings for Minimum Lubricant Volume

2022-08-30
2022-01-1120
Minimizing the lubricant volume in a transmission system reduces the churning losses and overall unit costs. However, lubricant volume reduction is also detrimental to the thermal stability of the system. Transmission overheating can result in significant issues in the region of loaded contacts, risking severe surface/sub-surface damage in bearings and gears, as well as reduction in the lubricant quality through advanced oxidation and shear degradation. The increasing trend of electrified transmission input speeds raises the importance of understanding the thermal limits of the system at the envelope of the performance to ensure quality and reliability can be maintained, as well as being a key factor in the development, effecting internal housing features for the promotion of lubrication. A nodal bearing thermal model will be shown which utilizes thermal resistances and smooth particle based CFD for determining bearing lubricant feed rates during operation.
Technical Paper

The Impact of Emissions and Fuel Economy Requirements on Fuel Injection System and Noise of HD Diesel Engines

1998-02-01
980176
Despite the increasingly stringent emissions legislation, users and owners of commercial diesel vehicles are continually demanding that each new engine generation is more economical than the previous one. This is especially important for commercial vehicles where the majority of engines are in the 1-2ltr./cyl. class. The demands are being reflected in new engine designs with lower friction and improved structural stiffness, together with fuel systems having increased pressure capability, higher spill rates, injection rate shaping and advanced control features. These fuel system requirements have led to a variety of new fuel injection systems and in the search for increased injection pressure these fuel systems have placed greater demands on the engine, especially in areas such as the cylinder head and fuel system drive, sometimes with adverse effects on the combustion and fuel injection system induced mechanical noise.
Technical Paper

Specialised Gear Rig for the Assessment of Loaded Transmission Error, Line of Action and Summarized Mesh Point

2023-04-11
2023-01-0463
Within gear pair development, the simulation of loaded transmission error, line of action and summarized mesh point are crucial information in design optimization as well as reliability, NVH and efficiency prediction. These properties and variables are difficult to evaluate and are usually only assessed through proxy-variables such as unloaded transmission error or contact pattern assessment. Alternatively, large design loops can be generated when prototypes are produced to directly assess the results of reliability, NVH and efficiency and simulation models updated to the results, but not directly calibrated. This work will showcase an advanced test facility with the unique capabilities to evaluate all gear contact types (including hypoid, beveloid, cylindrical and spiral) under loaded conditions while assessing position and force data that can be used to validate simulation models directly and enhance design development.
Technical Paper

Sound Optimization for Downsized Engines

2014-06-30
2014-01-2040
Today, the number of downsized engines with two or three cylinders is increasing due to an increase in fuel efficiency. However, downsized engines exhibit unbalanced interior sound in the range of their optimal engine speed, largely because of their dominant engine orders. In particular, the sound of two-cylinder engines yields half the perceived engine speed of an equivalent four-cylinder engine at the same engine speed. As a result when driving, the two-cylinder engine would be shifted to higher gears much later, diminishing the expected fuel savings. This contribution presents an active in-car sound generation system that makes a two-cylinder engine sound like the more familiar four-cylinder engine. This is done by active, load-dependent playback of signals extracted from the engine vibration through a shaker mounted on the firewall. A blind test with audio experts indicates a significant reduction of the engine speed when shifting to a higher gear.
Technical Paper

Single Cylinder 25kW Range Extender: Development for Lowest Vibrations and Compact Design Based on Existing Production Parts

2015-11-17
2015-32-0740
The automotive trend towards increased levels of electrification is showing a clear direction for hybrid technologies. Nowadays Mild- and plug-in-hybrids open a very wide area of future developments whereas battery electric vehicles (BEV) are still evident but still perceived as niche products with limited production volumes. Nevertheless, major OEMs are working on these kinds of vehicles and have also brought such EV concepts into series production. All of these designs show a clear trend that, beside the topic of electric traction motor and energy storage systems, the internal combustion engine (ICE) is also coming into focus again. In many of these vehicles the range extender (RE) unit is foreseen as an emergency unit to recharge the batteries if the state of charge (SOC) is too low. One of the major advantages of a BEV over other designs is the very good acoustic behavior, so the NVH performance becomes the most challenging topic for RE development.
Technical Paper

Simulation of Piston Ring Dynamics and Their Effect on Oil Consumption

2000-03-06
2000-01-0919
The sealing effect of piston rings in reciprocating engines have a major impact on blow-by and lube oil consumption (LOC). The sealing is achieved by the gas forces acting on the top and back side of the rings. In addition, the load in the radial direction is increased by the initial ring tension. Inertia forces arising from the oscillating vertical stroke and shear forces due to the secondary piston movement influence this sealing effect by a reduction in contact pressure. Numerical simulation of the piston and ring dynamics solves this non-linear problem and predicts the interaction between piston secondary motion, axial ring motion, and 2nd land pressure. This paper describes the modeling of the cylinder kit dynamics of a six-cylinder truck diesel engine for several operating conditions and ring modifications. The influence of boundary conditions and adjustment parameters on piston ring motion and gas penetration was investigated.
Journal Article

Simulation Methodology for Consideration of Injection System on Engine Noise Contribution

2010-06-09
2010-01-1410
The target of the investigation is the particular influence of a fuel injection system and its components as a noise source in automotive engines. The applied methodology is demonstrated on an automotive Inline 4-cylinder Diesel engine using a common rail system. This methodology is targeted as an extension of a typical standard acoustic simulation approach for combustion engines. Such approaches basically use multi-body dynamic simulation with interacting FEM based flexible structures, where the main excitation crank train, timing drive, valve train system and piston secondary motion are considered. Within the extended approach the noise excitation of the hydraulic and mechanical parts of the entire fuel system is calculated and subsequently considered within the multi-body dynamic simulation for acoustic evaluation of structural vibrations.
Technical Paper

Root Cause Analysis and Structural Optimization of E-Drive Transmission

2020-09-30
2020-01-1578
This paper describes the simulation tool chain serving to design and optimize the transmission of an electric axle drive from concept to final design with respect to NVH. A two-stage transmission of an eAxle is designed from scratch by the initial layout of gears and shafts, including the optimization of gear micro geometry. After the shaft system and bearings are defined, the concept design of the transmission housing is evaluated with the help of a basic topology optimization regarding stiffness and certain eigenfrequencies. In the next step a fully flexible multi-body dynamic (MBD) and acoustic analysis of the transmission is performed using internally calculated excitations due to gear contact and bearing interaction with shaft and gear dynamics for the entire speed and load range. Critical operating conditions in terms of shaft dynamics, structure borne noise and noise radiation are evaluated and selected as target for optimization in the following steps.
Technical Paper

Real Time Capable Pollutant Formation and Exhaust Aftertreatment Modeling-HSDI Diesel Engine Simulation

2011-04-12
2011-01-1438
Modern Diesel engines require an integrated development of combustion strategies, air management and exhaust aftertreatment. This study presents a comprehensive simulation approach with the aim to support engine development activities in the virtual environment. A real-time capable engine, vehicle and control model is extended by three key features. First, a pollutant production model is embedded in a two-zone cylinder model. Second, a framework for catalytic pollutant conversion is built focusing on modern diesel exhaust aftertreatment systems. Third, an extended species transport model is introduced considering the transport of pollutants through the air path. The entire plant model is validated on the example of a passenger car Diesel engine. The predicted engine behavior is compared with steady-state measurements. The NO formation model is investigated for a series of steady-state and transient operating conditions.
Technical Paper

Plant Modeling for Closed Loop Combustion Control - A Thermodynamic Consistent and Real-Time Capable Approach

2015-04-14
2015-01-1247
Direct injection Diesel engines are a propulsion technology that is continuously developed to meet emission standards. Great optimization potential lies in the combustion process itself. The application of closed loop combustion control allows reacting online to environmental conditions and stabilizing the combustion regarding performance and emissions. Dedicated real-time plant models help to develop and calibrate control algorithms in office and hardware in the loop environments. The present work describes a real-time capable, crank-angle resolved engine, cylinder and combustion model. The cylinder applies an 0D, two-zone approach and a phenomenological combustion model describes ignition delay, premixed and diffusive combustion. The latter is enhanced by a quasi-dimensional description of the injection spray. The model is validated with dedicated measurements. The plant model is applied in two use-cases for closed loop combustion control.
Technical Paper

Piston Clearance Optimization using Thermo-elasto Hydrodynamic Simulation to Reduce Piston Slap Excitation and Friction Loss

2012-06-13
2012-01-1530
The reduction of acoustic excitation due to piston slap as well as friction loss power and seizure are main issues when simulating the oil film lubricated piston - cylinder contacts of internal combustion engines. For a correct representation of the contact conditions between a piston skirt and a cylinder liner surface both the dynamics of the contacting flexible bodies, the shape of the contacting surfaces, the amount of available oil and the properties of the lubricant itself play important roles. Besides an appropriate representation of the hydrodynamic load carrying capacity using an averaged Reynolds equation with laminar flow conditions, the simulation has to use an appropriate asperity model to consider the mixed lubrication condition. The lubricant properties are in particular influenced by its thermal conditions.
Technical Paper

Performance Attributes for Root Cause Detection of Piston Induced Noise

2016-06-15
2016-01-1775
Modern powertrain noise investigation in the development process and during trouble shooting is a combination of experiment and simulation. In simulation in recent years main focus was set on model completeness, consideration of all excitation mechanisms and efficient and stabile numerical algorithms. By that the total response of the virtual powertrain is already comparable to the overall noise level of the real powertrain. Actual challenge is to trace back the overall response to its main excitation and noise generating mechanism as well as to their main driving parameters to support the engineer not only in reaching absolute values, but also to derive the root cause of a response or potential problem and to get hints on how to improve the specific behavior. Approaches by parameter sensitivity studies are time consuming and not unambiguous.
Technical Paper

On-board Optimization of Driveability Character Depending on Driver Style by Using a New Closed Loop Approach

2001-03-05
2001-01-0556
The paper describes a new methodology for a closed loop driving style detection, a vehicle driveability character evaluation and a control unit for an adaptation of the vehicle character according to the driving style. During driving the vehicle character is adapted to the driver, using the potential of modern torque based drive by wire engine control systems of gasoline and diesel engines. The methodology leads to a completely new human - vehicle interaction, the driver creates his own unique vehicle character. The vehicle owner is able to form a mass produced vehicle according to his demands. A typical drawback of globalisation, a loss of identification between owner and product can be avoided by the presented methodology. The basic structure of the evaluation and control strategies are shown as well as objective and subjective results of increased driving pleasure and higher driver identification due to increased sportiness and spontaneity up to 100%.
Technical Paper

Numerical and Experimental Analysis of Mixture Formation and Performance in a Direct Injection CNG Engine

2012-04-16
2012-01-0401
This paper presents the results of part of the research activity carried out by the Politecnico di Torino and AVL List GmbH as part of the European Community InGAS Collaborative Project. The work was aimed at developing a combustion system for a mono-fuel turbocharged CNG engine, with specific focus on performance, fuel economy and emissions. A numerical and experimental analysis of the jet development and mixture formation in an optically accessible, single cylinder engine is presented in the paper. The experimental investigations were performed at the AVL laboratories by means of the planar laser-induced fluorescence technique, and revealed a cycle-to-cycle jet shape variability that depended, amongst others, on the injector characteristics and in-cylinder backpressure. Moreover, the mixing mechanism had to be optimized over a wide range of operating conditions, under both stratified lean and homogeneous stoichiometric modes.
Technical Paper

Numerical Investigation in a Gear Drive of an Engine Balancing Unit with Respect to Noise, Friction and Durability

2015-09-06
2015-24-2526
This paper presents a methodology for numerical investigation of a full flexible balancer drive together with engine and crank train under realistic operating conditions where shaft dynamics, gear contact and rattle impacts, gear root stresses and friction losses in bearings and gear interaction are taken into account and can be balanced against each other to achieve the design criteria. Gear rattle is driven by the speed fluctuation of the crank train, the resistance torque (mainly friction), shaft inertia and the backlash in the gears. The actual trend to engine downsizing and up-torqueing increases the severity to rattle as engines are running on higher combustion pressures. This increases torque and speed fluctuation, which makes the detailed investigation in this torque transfer even more demanding. A common method to reduce gear rattle is the usage of so-called scissors gears.
Journal Article

Numerical Analysis of Combustion Process in the Dual Fuel Internal Combustion Engine

2023-04-11
2023-01-0206
Fully flexible dual fuel (DF) internal combustion (IC) engines, that can burn diesel and gas simultaneously, have become established among heavy-duty engines as they contribute significantly to lower the environmental impact of the transport sector. In order to gain better understanding of the DF combustion process and establish an effective design methodology for DFIC engines, high fidelity computational fluid dynamics (CFD) simulation tools are needed. The DF strategy poses new challenges for numerical modelling of the combustion process since all combustion regimes have to be modelled simultaneously. Furthermore, DF engines exhibit higher cycle-to-cycle variations (CCV) compared to the pure diesel engines. This issue can be addressed by employing large eddy simulation coupled with appropriate DF detailed chemistry mechanism. However, such an approach is computationally too expensive for today’s industry-related engine calculations.
Technical Paper

Nozzle Flow and Cavitation Modeling with Coupled 1D-3D AVL Software Tools

2011-09-11
2011-24-0006
The paper is devoted to the coupled 1D-3D modeling technology of injector flow and cavitation in diesel injections systems. The technology is based on the 1D simulation of the injector with the AVL software BOOST-HYDSIM and 3D modeling of the nozzle flow with AVL FIRE. The nozzle mesh with spray holes and certain part of the nozzle chamber is created with the FIRE preprocessor. The border between the 1D and 3D simulation regions can be chosen inside the nozzle chamber at any position along the needle shaft. Actual coupling version of both software tools considers only one-dimensional (longitudinal) needle motion. Forthcoming version already includes the two-dimensional motion of the needle. Furthermore, special models for the needle tip contact with the nozzle seat and needle guide contact with the nozzle wall are developed in HYDSIM. The co-simulation technology is applied for different common rail injectors in several projects.
Technical Paper

New Kinematic Design Methodology and Dynamic Simulation of Continuously Variable Valve Lift (CVVL) System

2010-04-12
2010-01-1202
Mechanical variable valve systems are being increasingly used for modern combustion engines. It is typical for such systems that the cam and valve are connected via intermediate levers. Different maximum valve lifts and duration can be achieved with the same cam profile. The intermediate levers increase the system inertia and reduce the overall stiffness. Such systems offer more flexibility, but it is more complex to create optimal design compared to the conventional systems. In this paper a new kinematic design methodology for a CVVL (Continuously Variable Valve Lift) system is presented. Additionally, dynamic analysis of the valve train system is performed. The investigated valve train is completely developed and patented by OEM. The main characteristic of the CVVL system is a set of intermediate levers between the cam and the finger follower like ( 1 , 2 ). One cam drives two intake valves over a set of levers.
Journal Article

NVH Challenges and Solutions for Vehicles with Low CO2 Emission

2012-06-13
2012-01-1532
Driven by worldwide climate change, governments are introducing more stringent emission regulations with particular focus on fuel saving for CO₂ emission reduction. Downsizing and weight reduction are two of the main drivers to achieve these demanding regulations. Both aspects however might have a strong negative effect on the overall vehicle NVH behavior. Weight reduction directly influences NVH due to reduction of absorption and damping material and due to light-weight design affecting the dynamic responses of powertrain and vehicle structures. Engine downsizing however has multiple negative effects on NVH. Beside higher vibrations and speed irregularities due to lower cylinder numbers and displacements also reduction of sound quality is a critical topic that will be handled within this publication.
X