Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Creation of a Car Interior Noise Quality Index for the Evaluation of Rattle Phenomena

1997-05-20
972018
Rattle noise produced in the vehicle interior due to broadband excitation by road irregularities is a major concern with respect to driving comfort, and therefore has become one of the most important topics of acoustic development in recent years. A quantification i.e. measurement of this rattle noise is of fundamental importance for systematic development work and production control. Common noise level measurements (dB, dBA, etc. ) do not represent the rattle character in the vehicle interior as revealed during initial investigations. To overcome this problem and to substitute the subjective assessment with a combination of measurable parameters, the psychoacoustic software AVL-EAR was applied to create an Interior Rattle Quality Index. Based on more than 40 different vehicles that have been subjectively assessed by approximately 70 test persons, the index was generated by means of multiple pair comparisons and statistics on measurement data.
Technical Paper

Novel Shift Control without Clutch Slip in Hybrid Transmissions

2017-03-28
2017-01-1110
With the introduction of new regulations on emissions, fuel efficiency, driving cycles, etc. challenges for the powertrains are significantly increasing. In order to fulfil these regulations, hybrid-electric powertrains are an unquestioned option for short and long-term solutions. Hybridization however, is not only fulfilling these challenging efficiency or emission targets, but also allows numerous new possibilities on control strategies of different powertrain elements as well as new approaches of designing them. A good example is transmissions where, hybridization allows a new transmission type called Dedicated Hybrid Transmission (DHT), which enables to use novel control strategies bringing improved performance, driveability, durability and NVH behavior. This paper focuses on the novel shift strategy where friction clutches do not have to slip.
Technical Paper

Modeling of the System Level Electric Drive using Efficiency Maps Obtained by Simulation Methods

2014-04-01
2014-01-1875
This work presents a physical model that calculates the efficiency maps of the inverter-fed Permanent Magnet Synchronous Machine (PMSM) drive. The corresponding electrical machine and its controller are implemented based on the two-phase (d-q) equivalent circuits that take into account the copper loss as well as the iron loss of the PMSM. A control strategy that optimizes the machine efficiency is applied in the controller to maximize the possible output torque. In addition, the model applies an analytical method to predict the losses of the voltage source inverter. Consequently, the efficiency maps within the entire operating region of the PMSM drive can be derived from the simulation results, and they are used to represent electric drives in the system simulation model of electric vehicles (EVs).
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Journal Article

Immersion Quenching Simulation of Realistic Cylinder Head Geometry

2014-04-01
2014-01-0641
In this paper, a recently improved Computational Fluid Dynamics (CFD) methodology for virtual prototyping of the heat treatment of cast aluminum parts, above most of cylinder heads of internal combustion engines (ICE), is presented. The comparison between measurement data and numerical results has been carried out to simulate the real time immersion quenching cooling process of realistic cylinder head structure using the commercial CFD code AVL FIRE®. The Eulerian multi-fluid modeling approach is used to handle the boiling flow and the heat transfer between the heated structure and the sub-cooled liquid. While for the fluid region governing equations are solved for each phase separately, only the energy equation is solved in the solid region. Heat transfer coefficients depend on the boiling regimes which are separated by the Leidenfrost temperature.
Technical Paper

Fatigue Strength Effect of Thread Forming Process in Cast Aluminum

2006-04-03
2006-01-0780
Two thread forming processes, rolling and cutting, were studied for their effects on fatigue in cast aluminum 319-T7. Material was excised from cylinder blocks and tested in rotating-bending fatigue in the form of unnotched and notched specimens. The notched specimens were prepared by either rolling or cutting to replicate threads in production-intent parts. Cut threads exhibited conventional notch behavior for notch sensitive materials. In contrast, plastic deformation induced by rolling created residual compressive stresses in the notch root and significantly improved fatigue strength to the point that most of the rolled specimens broke outside the notch. Fractographic and metallographic investigation showed that cracks at the root of rolled notches were deflected upon initiation. This lengthened their incubation period, which effectively increased fatigue resistance.
Technical Paper

Fast Charging at Cold Conditions—Model-Based Control Enabled by Multi-Scale Multi-Domain Plant Model

2022-03-29
2022-01-0702
Fast charging of batteries at cold conditions faces the challenge of promoting undesired cell degradation phenomena such as lithium plating. The occurrence of lithium plating is strongly related to local surface potentials and temperatures involving the scales of the electrode surface, the unit cell and the entire module or pack. A multi-scale, multi-domain model is presented, enhancing a Newman based unit cell model with consistent models for heat generation and lithium plating and integrating this 1D+1D approach into a thermal 3D model on module level. The basic equations are presented and three different plating models from literature are discussed. The thermal model is assessed in open-loop simulations and the different plating approaches are compared in charge/discharge simulations at different operating conditions. The full multi-scale, multi-domain model is applied as a virtual sensor for model-based control of fast charging at cold conditions.
Technical Paper

Battery Thermal Management Simulation - 1D+1D Electrochemical Battery and 3D Module Modeling on Vehicle System Level

2021-04-06
2021-01-0757
Approaching engineering limits for the thermal design of battery modules requires virtual prototyping and appropriate models with respect to physical depth and computational effort. A multi-scale and multi-domain model describes the electrochemical behavior of a single battery unit cell in 1D+1D at the level of intra-cell phenomena, and it applies a 3D thermal model at module level. Both models are connected within a common vehicle simulation platform. The models are discussed with special emphasis on battery degradation such as solid electrolyte interphase layer formation, decomposition and lithium plating. The performance of the electrochemical model is assessed by discharge cycles and repeated charge/discharge simulations. The thermal module model is compared to CFD reference data and studied with respect to its grid sensitivity.
Technical Paper

Automated Calibration for Transmission on Powertrain Dynamometers

2015-04-14
2015-01-1625
Today, OEMs are challenged with an increasing number of powertrain variants and complexity of controls software. They are facing internal pressure to provide mature and refined calibrations earlier in the development process. Until now, it was difficult to respond to these requests as the drivability's calibration tasks are mostly done in vehicles. This paper describes a new methodology designed to answer these challenges by performing automated shift quality calibration prior to the availability of vehicles. This procedure is using a powertrain dynamometer coupled with a real-time vehicle dynamics model. By using a Power Train Test Bed (PTTB), a physical vehicle is not required. As soon as the vehicle dynamics model and its parameters have been defined, it can be simulated on the PTTB and drivability calibrations can be developed. A complete powertrain is coupled with low inertia and highly dynamic dynamometers.
Technical Paper

Assessment of a Multi Zone Combustion Model for Analysis and Prediction of CI Engine Combustion and Emissions

2011-04-12
2011-01-1439
The paper describes a universally structured simulation platform which is used for the analysis and prediction of combustion in compression ignition (CI) engines. The models are on a zero-dimensional crank angle resolved basis as commonly used for engine cycle simulations. This platform represents a kind of thermodynamic framework which can be linked to single and multi zone combustion models. It is mainly used as work environment for the development and testing of new models which thereafter are implemented to other codes. One recent development task focused on a multi zone combustion model which corresponds to the approach of Hiroyasu. This model was taken from literature, extended with additional features described in this paper, and implemented into the thermodynamic simulation platform.
X