Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

e-Fuel Production via Renewables and the Impact on the In-Use CO2 Performance

2020-09-15
2020-01-2139
The trend towards renewable energy sources will continue under the pre-amble of greenhouse gas (GHG) emission reduction targets. The main question is how to harvest and store renewable energy properly. The challenge of intermittency of the renewable energy resources make the supply less predictable compared to the traditional energy sources. Chemical energy carriers like hydrogen and synthetic fuels (e-Fuels) seem to be at least a part of the solution for storing renewable energy. The usage of e-Fuels in the existing ICE-powered vehicle fleet has a big lever arm to reduce the GHG emissions of the transport sector in the short- and medium term. The paper covers the whole well-to-wheel (WtW) pathway by discussing the e-Fuel production from renewable sources, the storage and the usage in the vehicle. It will be summarized by scenarios on the impact of e-Fuel to the WtW CO2 fleet emissions.
Journal Article

Why Cu- and Fe-Zeolite SCR Catalysts Behave Differently At Low Temperatures

2010-04-12
2010-01-1182
Cu- and Fe-zeolite SCR catalysts emerged in recent years as the primary candidates for meeting the increasingly stringent lean exhaust emission regulations, due to their outstanding activity and durability characteristics. It is commonly known that Cu-zeolite catalysts possess superior activity to Fe-zeolites, in particular at low temperatures and sub-optimal NO₂/NOx ratios. In this work, we elucidate some underlying mechanistic differences between these two classes of catalysts, first based on their NO oxidation abilities, and then based on the relative properties of the two types of exchanged metal sites. Finally, by using the ammonia coverage-dependent NOx performance, we illustrate that state-of-the-art Fe-zeolites can perform better under certain transient conditions than in steady-state.
Technical Paper

Verification and Validation for Modular Development Platforms

2023-04-11
2023-01-0476
As electrified powertrains trends towards the new norm in development, the need to consider modular development approaches becomes more prevalent. Modular system developments seek to offer an adaptable product range by considering each system component (transmission, e-motor, inverter, battery, etc.) and system element (park-lock, disconnect, differential, etc.) as interchangeable. This can result in a lower cost development process overall to increase the returns for tier1 suppliers by expanding the marketability of the platform. Such an approach has hitherto held relatively low commercial interest as the rate of technological advancement negated the benefits of a modular development due to the lack of long-term competitivity. Previously large technological advances between successive productions and the relatively limited EV market, centred around SUV and small car applications, reduced the value in committing to a platform development.
Technical Paper

Vehicle Thermal Management Simulation Method Integrated in the Development Process from Scratch to Prototype

2014-04-01
2014-01-0668
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Furthermore the increasing number of vehicle configurations leads to a high variability and degrees of freedom in possible system designs and the control thereof, which can only be handled by a comprehensive tool chain of vehicle system simulation and a generic control system architecture. The required model must comprise all relevant systems of the vehicle (control functionality, cooling system, lubrication system, engine, drive train, HV components etc.). For proper prediction with respect to energy consumption all interactions and interdependencies of those systems have to be taken into consideration, i.e. all energy fluxes (mechanical, hydraulically, electrical, thermal) have to be exchanged among the system boundaries accordingly.
Technical Paper

Vehicle Sound Engineering by Modifying Intake / Exhaust Orifice Noise Using Simulation Software

2003-05-05
2003-01-1686
Apart of other aspects, the interior sound of a passenger car brand has to meet customer expectations. For optimizing the sound of a passenger car, target sounds have first to be established via the operating range of the vehicle. For an effective sound engineering approach an objective description and evaluation of vehicle interior sound is beneficial. Such an objective description guarantees the effective and reproducible implementation of the required brand sound in the vehicle development process. In such a process it is necessary to reduce on the one hand annoying undesired noise aspects and to create on the other hand the relevant and necessary noise parameters to meet the target sounds head on.
Technical Paper

Vehicle Duty Cycle Characteristics for Hybrid Potential Evaluation

2012-09-24
2012-01-2023
A range of cycle characteristics have been used to estimate the hybrid potential for vehicle duty cycles including characteristic acceleration, aerodynamic velocity, kinetic intensity, stop time, etc. These parameters give an indication of overall hybrid potential benefits, but do not contain information on the distribution of the available braking energy and the hybrid system power required to capture the braking energy. In this paper, the authors propose two new cycle characteristics to help evaluate overall hybrid potential of vehicle cycles: P50 and P90, which are non-dimensional power limits at 50% and 90% of available braking energy. These characteristics are independent of vehicle type, and help illustrate the potential hybridization benefit of different drive cycles. First, the distribution of available braking energy as a function of brake power for different vehicle cycles and vehicle classes is analyzed.
Journal Article

Use of a Catalytic Stripper as an Alternative to the Original PMP Measurement Protocol

2013-04-08
2013-01-1563
The Particle Measurement Programme (PMP) developed an exhaust particle number measurement protocol that has been adopted by current light duty vehicle emission regulations in Europe. This includes thermal treatment of the exhaust aerosol to isolate solid particles only and a number counting device with a lower cutpoint of 23 nm to avoid measurement of smaller particles that may affect the repeatability of the measurement. In this paper, we examine a potential alternative to the PMP system, where the thermal treatment is replaced by a catalytic stripper (CS). This offers oxidation and not just evaporation of the volatile components. Alternative sampling systems, either fulfilling the PMP recommendations or utilizing a CS, have been explored in terms of their volatile particle removal efficiency. Tests have been conducted on diesel exhaust, diesel equipped with DPF and gasoline direct injection emissions.
Journal Article

Towards Brand-Independent Architectures, Components and Systems for Next Generation Electrified Vehicles Optimised for the Infrastructure

2022-03-29
2022-01-0918
E-mobility is a game changer for the automotive domain. It promises significant reduction in terms of complexity and in terms of local emissions. With falling prices and recent technological advances, the second generation of electric vehicles (EVs) that is now in production makes electromobility an affordable and viable option for more and more transport mission (people, freight). Still, major challenges for large scale deployment remain. They include higher maturity with respect to performance (e.g., range, interaction with the grid), development efficiency (e.g., time-to-market), or production costs. Additionally, an important market transformation currently occurs with the co-development of automated driving functions, connectivity, mobility-as-a-service. New opportunities arise to customize road transportation systems toward application-driven, user-centric smart mobility solutions.
Technical Paper

Tool Based Calibration with the OBDmanager

2010-04-12
2010-01-0249
At the moment the documentation of failure inhibition matrices and the fault path management for different controller types and different vehicle projects are mainly maintained manually in individual Excel tables. This is not only time consuming but also gives a high potential for fault liability. In addition there is also no guarantee that the calibration of these failure inhibition matrices and its fault path really works. Conflicting aims between costs, time and fault liability require a new approach for the calibration, documentation and testing of failure inhibition matrices and the complete Diagnostic System Management (DSM) calibration. The standardization and harmonization of the Diagnostic System Management calibration for different calibration projects and derivates is the first step to reduce time and costs. Creating a master calibration for the conjoint fault paths and labels provides a significant reduction of efforts.
Journal Article

Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

2013-04-08
2013-01-0282
Light duty vehicle emission standards are getting more stringent than ever before as stipulated by US EPA Tier 2 Standards and LEV III regulations proposed by CARB. The research in this paper sponsored by US DoE is focused towards developing a Tier 2 Bin 2 Emissions compliant light duty pickup truck with class leading fuel economy targets of 22.4 mpg “City” / 34.3 mpg “Highway”. Many advanced technologies comprising both engine and after-treatment systems are essential towards accomplishing this goal. The objective of this paper would be to discuss key engine technology enablers that will help in achieving the target emission levels and fuel economy. Several enabling technologies comprising air-handling, fuel system and base engine design requirements will be discussed in this paper highlighting both experimental and analytical evaluations.
Technical Paper

The OBD System Development Database - a Solution for Knowledge Management and Tool Supported Control System Design and Calibration

2014-04-01
2014-01-1171
The correct information about legal demands of the On-Board-Diagnostic (OBD) system in a vehicle project is required throughout the entire development process. Usually, the main obstacle in succeeding is to provide the company's expertise of some few experts for all employees who work in OBD related projects. The paper describes the AVL solution for knowledge management and tool supported control system design and calibration: OBD System Development Database. The software enables the user to access the regulatory requirements for a specific application and legislation from past, present and future (proposed rule-making) point of view. Information concerning already available and stored monitoring concepts is linked to the requirements in order to re-use potentially suitable concepts and to enable an efficient knowledge exchange within the company.
Technical Paper

The Influences on Real Driving Emissions in India Outlook RDE Legislation BHARAT VI

2017-01-10
2017-26-0137
With the official publication of the “RDE package 1” on 31st March 2016 the long awaited start of RDE testing is now fixed. This event marks a milestone in the emission legislation for passenger cars and is the first of a series of four RDE packages to fade-in real world testing of passenger cars in Europe. During the same time India announced in the Gazette of India on 19th February, 2016 - G.S.R. 187(E). - the draft of introduction of Bharat VI by April 1st 2020 [5] which also should include the Real Driving Emissions (RDE) on-road certification as per procedure laid down in AIS137 and as amended from time to time. As European RDE legislation will be the baseline for Indian RDE legislation rules this paper will highlight the differences and challenges expected between the requirements in Europe compared to India during the first tests done by AVL Technical Center Private Limited located in Gurgaon.
Technical Paper

The Influences of Testing Conditions on DOC Light-Off Experiments

2023-04-11
2023-01-0372
Diesel oxidation catalyst (DOC) is one of the critical catalyst components in modern diesel aftertreatment systems. It mainly converts unburned hydrocarbon (HC) and CO to CO2 and H2O before they are released to the environment. In addition, it also oxidizes a portion of NO to NO2, which improves the NOx conversion efficiency via fast SCR over the downstream selective catalytic reduction (SCR) catalyst. HC light-off tests, with or without the presence of NOx, has been typically used for DOC evaluation in laboratory. In this work, we aim to understand the influences of DOC light-off experimental conditions, such as initial temperature, initial holding time, HC species, with or without the presence of NOx, on the DOC HC light-off behavior. The results indicate that light-off test with lower initial temperature and longer initial holding time (at its initial temperature) leads to higher DOC light-off temperature.
Technical Paper

The Impact of Lubricant and Fuel Derived Sulfur Species on Efficiency and Durability of Diesel NOx Adsorbers

2004-10-25
2004-01-3011
Global emission legislations for diesel engines are becoming increasingly stringent. While the exhaust gas composition requirements for prior iterations of emission legislation could be met with improvements in the engine's combustion process, the next issue of European, North American and Japanese emission limits greater than 2005 will require more rigorous measures, mainly employment of exhaust gas aftertreatment systems. As a result, many American diesel OEMs are considering NOx adsorbers as a means to achieve 2007+ emission standards. Since the efficacy of a NOx adsorber over its lifetime is significantly affected by sulfur (“sulfur poisoning”), forthcoming reductions in diesel fuel sulfur (down to 15 ppm), have raised industry concerns regarding compatibility and possible poisoning effects of sulfur from the lubricant.
Journal Article

The Impact of Ammonium Nitrate Species on Low Temperature NOx Conversion Over Cu/CHA SCR Catalyst

2017-03-28
2017-01-0953
Cu/CHA catalysts have been widely used in the industry, due to their desirable performance characteristics including the unmatched hydrothermal stability. While broadly recognized for their outstanding activity at or above 200°C, these catalysts may not show desired levels of NOx conversion at lower temperatures. To achieve high NOx conversions it is desirable to have NO2/NOx close to 0.5 for fast SCR. However even under such optimal gas feed conditions, sustained use of Cu/CHA below 200°C leads to ammonium nitrate formation and accumulation, resulting in the inhibition of NOx conversion. In this contribution, the formation and decomposition of NH4NO3 on a commercial Cu/CHA catalyst have been investigated systematically. First, the impact of NH4NO3 self-inhibition on SCR activity as a function of temperature and NO2/NOx ratios was investigated through reactor testing.
Technical Paper

The Effects of Thermal Degradation on the Performance of a NOX Storage/Reduction Catalyst

2009-04-20
2009-01-0631
The performance characteristics of a commercial lean-NOX trap catalyst were evaluated between 200 and 500°C, using H2, CO, and a mixture of both H2 and CO as reductants before and after different high-temperature aging steps, from 600 to 750°C. Tests included NOX reduction efficiency during cycling, NOX storage capacity (NSC), oxygen storage capacity (OSC), and water-gas-shift (WGS) and NO oxidation reaction extents. The WGS reaction extent at 200 and 300°C was negatively affected by thermal degradation, but at 400 and 500°C no significant change was observed. Changes in the extent of NO oxidation did not show a consistent trend as a function of thermal degradation. The total NSC was tested at 200, 350 and 500°C. Little change was observed at 500°C with thermal degradation but a steady decrease was observed at 350°C as the thermal degradation temperature was increased.
Technical Paper

The 2-Step VCR Conrod System - Modular System for High Efficiency and Reduced CO2

2017-03-28
2017-01-0634
In order to achieve future CO2 targets - in particular under real driving conditions - different powertrain technologies will have to be introduced. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the internal combustion engine. In addition to further optimization of the combustion processes and the reduction of mechanical losses in the thermal- and energetic systems, the introduction of Variable Compression Ratio (VCR) is probably the measure with the highest potential for fuel economy improvement. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The basic principle of the AVL VCR system described in this paper is a 2-stage variation of the conrod length and thus the Compression Ratio (CR).
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
Technical Paper

Sulfur Management of NOx Adsorber Technology for Diesel Light-duty Vehicle and Truck Applications

2003-10-27
2003-01-3245
Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure.
Technical Paper

Sulfur Impact on Methane Steam Reforming over the Stoichiometric Natural Gas Three-Way Catalyst

2024-04-09
2024-01-2633
The steam reforming of CH4 plays a crucial role in the high-temperature activity of natural gas three-way catalysts. Despite existing reports on sulfur inhibition in CH4 steam reforming, there is a limited understanding of sulfur storage and removal dynamics under various lambda conditions. In this study, we utilize a 4-Mode sulfur testing approach to elucidate the dynamics of sulfur storage and removal and their impact on three-way catalyst performance. We also investigate the influence of sulfur on CH4 steam reforming by analyzing CH4 conversions under dithering, rich, and lean reactor conditions. In the 4-Mode sulfur test, saturating the TWC with sulfur at low temperatures emerges as the primary cause of significant three-way catalyst performance degradation. After undergoing a deSOx treatment at 600 °C, NOx conversions were fully restored, while CH4 conversions did not fully recover.
X