Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Ways to Meet Future Emission Standards with Diesel Engine Powered Sport Utility Vehicles (SUV)

2000-03-06
2000-01-0181
The paper reports on the outcome of a still on-going joint-research project with the objective of establishing a demonstrator high speed direct injection (HSDI) diesel engine in a Sport Utility Vehicle (SUV) which allows to exploit the effectiveness of new engine and aftertreatment technologies for reducing exhaust emissions to future levels of US/EPA Tier 2 and Euro 4. This objective should be accomplished in three major steps: (1) reduce NOx by advanced engine technologies (cooled EGR, flexible high pressure common rail fuel injection system, adapted combustion system), (2) reduce particulates by the Continuous Regeneration Trap (CRT), and (3) reduce NOx further by a DeNOx aftertreatment technology. The current paper presents engine and vehicle results on step (1) and (2), and gives an outlook to step (3).
Technical Paper

Virtual Test Bed (VTB) Based Engine Calibration: Unique Approach to Ensure Engine Component Protection & to Meet WNTE in Different Environment Condition for Medium Duty Diesel Engine

2024-01-16
2024-26-0045
In view of BS-VI emission norms implementation in Commercial Vehicle (CV) application, the emissions are not only confirmed in standard condition but also in non-standard condition including different combinations of ambient temperature and pressure especially for checking the emission in WNTE cycle. However, achieving the emissions in different environmental conditions require physical emission calibration to be performed in those conditions. Hence, engine must be calibrated in climatic test chambers to ensure emission in different climatic conditions leading to multifold increase in the calibration effort. With addition of BS-VI emission regulation, After Treatment System (ATS) is a mandatory requirement to reduce the tail pipe emissions. Efficient functioning of ATS requires enough heating to convert the engine out emissions. Vehicle level Real Drive Emission (RDE) measurement without Conformity Factor (CF) limitation are added as an important legislative requirement.
Technical Paper

Vibration Comfort Control for HEV Based on Machine Learning

2014-06-30
2014-01-2091
Hybrid electric vehicles (HEVs) with a power-split system offer a variety of possibilities in reduction of CO2 emissions and fuel consumption. Power-split systems use a planetary gear sets to create a strong mechanical coupling between the internal combustion engine, the generator and the electric motor. This concept offers rather low oscillations and therefore passive damping components are not needed. Nevertheless, during acceleration or because of external disturbances, oscillations which are mostly influenced by the ICE, can still occur which leads to a drivability and performance downgrade. This paper proposes a design of an active damping control system which uses the electric motor to suppress those oscillations instead of handling them within the ICE control unit. The control algorithm is implemented as part of an existing hybrid controller without any additional hardware introduced.
Technical Paper

VVT+Port Deactivation Application on a Small Displacement SI 4 Cylinder 16V Engine: An Effective Way to Reduce Vehicle Fuel Consumption

2003-03-03
2003-01-0020
During recent years several VVT devices have been developed, in order to improve either peak power and low end torque, or part load fuel consumption of SI engines. This paper describes an experimental activity, concerning the integration of a continuously variable cam phaser (CVCP), together with an intake port deactivation device, on a small 4 cylinder 16V engine. The target was to achieve significantly lower fuel consumption under normal driving conditions, compared to a standard MPFI application. A single hydraulic cam phaser is used to shift both the intake and the exhaust cams to retarded positions, at constant overlap. Thus, high EGR rates in the combustion chamber and late intake valve closure (“reverse Miller cycle”) are combined, in order to reduce pumping losses at part load.
Technical Paper

Using Simulation and Optimization Tools to Decide Engine Design Concepts

2000-03-06
2000-01-1267
To meet the future demands on internal combustion engines regarding efficiency emissions and durability all design parameters must be optimized together. As a result of progress in material engineering fuel injection technology turbo charging technology exhaust gas after treatment there arise a multiplicity of possible parameters, such as: design parameters (compression ratio, dimensioning depending on peak firing pressure and mean effective pressure), injection system (rate shaping, split injection, injection pressure, hole diameter), air management (turbo charging with or without VTG, EGR rate) combustion optimization (timing, air access ratio). The interaction of all these parameters can not be over-looked without simulation and optimization tools. This is valid for the concept layout, the optimization and the application process later on.
Technical Paper

ULEV Potential of a DI/TCI Diesel Passenger Car Engine Operated on Dimethyl Ether

1995-12-01
952754
The paper describes a feasibility test program on a 2 liter, 4 cylinder DI/TCI passenger car engine operated on the new alternative fuel Dimethyl Ether (DME, CH3 - O - CH3) with the aim of demonstrating its potential of meeting ULEV emissions (0.2 g/mi NOx in the FTP 75 test cycle) when installed in a full size passenger car. Special attention is drawn to the fuel injection equipment (FIE) as well as combustion system requirements towards the reduction of NOx and combustion noise while keeping energetic fuel consumption at the level of the baseline DI/TCI diesel engine. FIE and combustion system parameters were optimized on the steady state dynamometer by variation of a number of parameters, such as rate of injection, number of nozzle holes, compression ratio, piston bowl shape and exhaust gas recirculation.
Technical Paper

Trends of Future Emission Legislation and its Measurement Requirements

2004-11-16
2004-01-3291
People have been altering the atmosphere on a small scale ever since they learned to make fire. Today's air pollution can influence ecosystems and transform climate worldwide. Motorized transport has become essential, today about 1000 million vehicles are on the world's roads [1]. Vehicle registrations are still sharply upward, where the future growth is most rapid in Asia and Latin America. Over the past, global pollution concerns have increased and air quality targets have been established. Also the reduction of green house gases like CO2 (Kyoto protocol) is considered. Aligned with such air quality targets automotive emission limits have been implemented. The future emission limits will require advanced engine technologies, but will also require adjustments to the measurement technologies. Furthermore new trends in the emission legislation will increase test requirements to represent the real world conditions in a more realistic way.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

Time-Domain Simulation Approach for the Electromagnetically Excited Vibrations of Squirrel-Cage Induction Machine Drives under Pulse-Width Modulated Supply

2022-06-15
2022-01-0932
In this paper, the multi-physical simulation workflow from electromagnetics to structural dynamics for a squirrel-cage induction machine is explored. In electromagnetic simulations, local forces and rotor torque are calculated for specific speed-torque operation points. In order to consider non-linearities and interaction with control system as well as transmission, time-domain simulations are carried out. For induction machines, the computational effort with full transient numerical methods like finite element analysis (FEA) is very high. A novel reduced order electro-mechanical model is presented. It still accounts for vibro-acoustically relevant harmonics due to pulse-width modulation (PWM), slotting, distributed winding and saturation effects, but is substantially faster (minutes to hours instead of days to weeks per operation point).
Technical Paper

Thermodynamic Limits of Efficiency Enhancement of Small Displacement Single-Cylinder Engines

2015-11-17
2015-32-0817
Millions of small displacement single-cylinder engines are used for the propulsion of scooters, motorcycles, small boats and others. These SI-engines represent the basis of an affordable mobility in many countries, but at the same time their efficiency is quite low. Today, the limited fossil fuel resources and the anthropogenic climate require a sustainable development of combustion engines, the reduction of fuel consumption being an important factor. A variety of different strategies (turbo-charging, cylinder deactivation, direct injection, etc.) are investigated here to increase the efficiency of multi-cylinder engines. In the case of small displacement single-cylinder engines, other strategies are required because of their special design and the high pressure on costs. In the context of this paper different layout parameters which have an influence on the working process are investigated, with the aim of increasing the efficiency of small displacement single-cylinder engines.
Technical Paper

Thermal Mechanical Fatigue Simulation of Cast iron Cylinder Heads

2005-04-11
2005-01-0796
The requirement for increased power and reduced emission and fuel consumption levels for diesel engines has created very stringent demands on the cylinder head design. In current engine development programs it is often observed that the limiting design factor is given by the thermal mechanical fatigue strength of the cylinder head. Design iterations resulting from durability testing are often necessary due to the lack of adequate simulation techniques for prediction thermal mechanical fatigue (TMF) failure. A complete lifetime simulation process is presented in this paper with emphasis on a newly developed material model for describing the constitutive behavior of cast iron (i.e. gray cast iron and compacted graphite iron) under thermal cycling. The material model formulation is based on a continuum-damage-mechanics (CDM) approach in order to account for the tension / compression anomaly of cast iron.
Technical Paper

The Patch-Transfer-Function (PTF) Method Applied to Numerical Models of Trim Materials Including Poro-Elastic Layers

2018-06-13
2018-01-1569
In automotive industry, acoustic trim materials are widely used in order to reach passenger comfort targets. The dynamic behavior of the poro-elastic materials is typically modelled by the Biot theory, which however leads to expensive numerical finite element calculations. One way to deal with it is to use the Patch-Transfer-Function (PTF) sub-structuring method, which couples subdomains at their interfaces through impedance relations. This was done already for systems including locally reacting poro-elastic materials. In this paper, a methodology is presented allowing to numerically assess the PTF impedance matrices of non-locally reacting trim materials using the Biot based poro-elastic model solved by the finite element method (FEM). Simplifications of the trim impedance matrices are introduced resulting in considerable calculation cost reductions. The associated prediction errors are discussed by means of a numerical case study.
Technical Paper

The Interaction Between Diesel Fuel Density and Electronic Engine Management Systems

1996-10-01
961975
The influence of fuel density on exhaust emissions from diesel engines has been investigated in a number of studies and these have generally concluded that particulate emissions rise with increasing density This paper reviews recent work in this area, including the European Programme on Emissions, Fuels and Engine Technologies (EPEFE) and reports on a complementary study conducted by CONCAWE, in cooperation with AVL List GmbH The project was carried out with a passenger car equipped with an advanced technology high speed direct injection turbocharged / intercooled diesel engine fitted with a complex engine management system which was referenced to a specific fuel density This production model featured electronic diesel control, closed loop exhaust gas recirculation and an exhaust oxidation catalyst Tests were carried out with two EPEFE fuels which excluded the influence of key fuel properties other than density (828 8 and 855 1 kg/m3) Engine operation was adjusted for changes in fuel density by resetting the electronic programmable, read-only memory to obtain the same energy output from the two test fuels In chassis dynamometer tests over the ECE15 + EUDC test cycle the major impact of fuel density on particulate emissions for advanced engine technology/engine management systems was established A large proportion of the density effect on particulate and NOx emissions was due to physical interaction between fuel density and the electronic engine management system Limited bench engine testing of the basic engine showed that nearly complete compensation of the density effect on smoke (particulate) emissions could be achieved when no advanced technology was applied
Technical Paper

The Effect of Fuel Specifications and Different Aftertreatment Systems on Exhaust Gas Odour and Non-Regulated Emissions at Steady State and Dynamic Operation of DI-Diesel Engines

1999-10-25
1999-01-3559
Diesel exhaust gas contains low molecular aliphatic carbonyl compounds and strongly smelling organic acids, which are known to have an irritant influence on eyes, nose and mucous membranes. Thus, diesel exhaust aftertreatment has to be considered more critically than that of gasoline engines, with respect to the formation of undesired by-products. The results presented here have been carried out as research work sponsored by the German Research Association for Internal Combustion Engines (FVV). The main objective of the three year project was to evaluate the behaviour of current and future catalyst technology on the one hand (oxidation catalyst, CRT system, SCR process), and regulated and certain selected non-regulated exhaust gas emission components and exhaust gas odour on the other hand.
Technical Paper

The Effect of Different Air Path Based ATS Thermal Management Strategy on a Non- EGR Medium Duty Diesel Engine’s Performance and Emissions

2024-01-16
2024-26-0038
The major objective of this paper is to develop thermal management strategy targeting optimum performance of Selective Catalytic Reduction (SCR) catalyst in a Medium Duty Diesel Engine performing in BS6 emission cycles. In the current scenario, the Emissions Norms are becoming more stringent and with the introduction of Real Drive Emission Test (RDE) and WHTC test comprising of both cold and hot phase, there is a need to develop techniques and strategies which are quick to respond in real time to cope with emission limit especially NOx. SCR seems to be suitable solution in reducing NOx in real time. However, there are limitations to SCR operating conditions, the major being the dosing release conditions which defines the gas temperature at which DEF (Diesel Exhaust Fluid) can be injected as DEF injection at lower gas temperatures than dosing release will lead to Urea deposit formation and will significantly hamper the SCR performance.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

The Clean Heavy Duty Diesel Engine of the Future: Strategies for Emission Compliance

2001-11-01
2001-28-0045
The internal combustion engines, and the heavy duty truck diesel engines in particular, are facing a severe challenge to cope with the upcoming stringent emission legislation world-wide. To comply with these low limits, engine internal measures must be complemented with exhaust gas aftertreatment systems with sophisticated electronic control. A reduction of NOx and particulate emission of more than 90% is required. Various strategies to comply with Euro 4, 5 and US 2007 are discussed, also in view of engine performance, fuel economy and cooling system load. Recommendations are given for the most suitable approach to comply also in future with emission legislation in Europe and the United States.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

The Application of a New Software Tool for Separating Engine Combustion and Mechanical Noise Excitation

2007-05-15
2007-01-2376
The optimization of engine NVH is still an important aspect for vehicle interior and exterior noise radiation. To optimize the engine noise / vibration contribution to the vehicle, a complete understanding of the excitation mechanism, the vibration transfer in the engine structure and the radiation efficiency of the individual engine components is required. Concerning the excitation within the engine, a very efficient analysis methodology for the combustion- and mechanical excitation within gasoline and diesel engines has been developed. Out of this methodology a software tool has been designed for a fast, efficient and detailed evaluation of the combustion- and mechanical excitation content of total engine noise. Recently this software tool has been successfully applied in engine NVH optimization work for defining the best optimization strategies for engine NVH reduction and noise quality improvement especially with respect to combustion excitation.
Technical Paper

Testing of a Long Haul Demonstrator Vehicle with a Waste Heat Recovery System on Public Road

2016-09-27
2016-01-8057
This paper presents the results of a long haul truck Waste Heat Recovery (WHR) system from simulation, test bench and public road testing. The WHR system uses exhaust gas recuperation only and utilizes up to 110kW of exhaust waste heat for the Organic Rankine Cycle (ORC) in a typical European driving cycle. The testing and simulation procedures are explained in detail together with the tested and simulated WHR fuel consumption benefit for different real life cycles in Europe and USA reaching fuel consumption benefits between 2.5% and 3.4%. Additionally a technology road map is shown which discusses the role of WHR in fulfilling the future CARB BSFC target value (minimum in map) of around 172 g/kWh.
X