Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

eFMI (FMI for Embedded Systems) in AUTOSAR for Next Generation Automotive Software Development

2021-09-22
2021-26-0048
Nowadays automobiles are getting smart and there is a growing need for the physical behavior to become part of its software. This behavior can be described in a compact form by differential equations obtained from modeling and simulation tools. In the offline simulation domain the Functional Mockup Interface (FMI) [3], a popular standard today supported by many tools, allows to integrate a model with solver (Co-Simulation FMU) into another simulation environment. These models cannot be directly integrated into embedded automotive software due to special restrictions with respect to hard real-time constraints and MISRA compliance. Another architectural restriction is organizing software components according to the AUTOSAR standard which is typically not supported by the physical modeling tools. On the other hand AUTOSAR generating tools do not have the required advanced symbolic and numerical features to process differential equations.
Technical Paper

Yaw Rate Sensor for Vehicle Dynamics Control System

1995-02-01
950537
From the beginning of 1995 on, RB will start the production of the Vehicle Dynamics Control System. A key part of this system is the Yaw Rate Sensor described in this paper. The basic requirements for this sensor for automotive applications are: mass producibility, low cost, resistance against environmental influences (such as temperature, vibrations, EMI), stability of all characteristics over life time, high reliability and designed-in safety. Bosch developed a sensor on the basis of the “Vibrating Cylinder”. The sensor will be introduced into mass production in beginning of 1995.
Technical Paper

Virtual Test Bed (VTB) Based Engine Calibration: Unique Approach to Ensure Engine Component Protection & to Meet WNTE in Different Environment Condition for Medium Duty Diesel Engine

2024-01-16
2024-26-0045
In view of BS-VI emission norms implementation in Commercial Vehicle (CV) application, the emissions are not only confirmed in standard condition but also in non-standard condition including different combinations of ambient temperature and pressure especially for checking the emission in WNTE cycle. However, achieving the emissions in different environmental conditions require physical emission calibration to be performed in those conditions. Hence, engine must be calibrated in climatic test chambers to ensure emission in different climatic conditions leading to multifold increase in the calibration effort. With addition of BS-VI emission regulation, After Treatment System (ATS) is a mandatory requirement to reduce the tail pipe emissions. Efficient functioning of ATS requires enough heating to convert the engine out emissions. Vehicle level Real Drive Emission (RDE) measurement without Conformity Factor (CF) limitation are added as an important legislative requirement.
Technical Paper

Vehicle Driveability Assessment using Neural Networks for Development, Calibration and Quality Tests

2000-03-06
2000-01-0702
Actual automotive themes in the beginning century are globalization and platform concepts. Platforms reduce manpower for basic power train development and enable a higher vehicle quality by sharing development cost to many models. New drive train generations with direct injected diesel and gasoline engines, variable valve train systems and hybrid drives require complex electronic control systems with many control parameters, which must be calibrated for each platform model to fulfill the targets for emissions, diagnostics and driveability. Calibration becomes a critical procedure in vehicle development. A negative effect of the platform is the reduced possibility to give a model or an OEM a brand specific driveability character, traditionally an important sales - promoting factor. The paper describes a tool for the objective real time assessment of vehicle driveability and vehicle character, using a new subjective - objective approach.
Technical Paper

Variable Orifice Geometry Verified on the Two-Phase Nozzle (VRD)

1995-02-01
950081
Innovative solutions for reducing particulate emissions will be necessary in order to comply with the even more stringent exhaust-gas standards of the future. The potential of a diesel nozzle with variable orifice geometry has long been common knowledge in the area of engine construction. But up to now, a fully functional solution of such a nozzle has not appeared which operates with a reduced orifice at low engine speeds and/or low loads. Here with regard to target costing, the requirements implicit in function and manufacture must also be taken into account. Using calculations on nozzle interior flow and injection-spray investigations, it will be shown which nozzle geometries best fulfill the various requirements. In order to achieve low levels of particulate emission in an engine with a combustion chamber designed for optimum use of a hole-type nozzle, the injection-spray direction and its geometry must to a large extent correspond to those of a hole-type nozzle.
Technical Paper

Validation of Diesel Fuel Spray and Mixture Formation from Nozzle Internal Flow Calculation

2005-05-11
2005-01-2098
A series calculation methodology from the injector nozzle internal flow to the in-cylinder fuel spray and mixture formation in a diesel engine was developed. The present method was applied to a valve covered orifice (VCO) nozzle with the recent common rail injector system. The nozzle internal flow calculation using an Eulerian three-fluid model and a cavitation model was performed. The needle valve movement during the injection period was taken into account in this calculation. Inside the nozzle hole, cavitation appears at the nozzle hole inlet edge, and the cavitation region separates into two regions due to a secondary flow in the cross section, and it is distributed to the nozzle exit. Unsteady change of the secondary flow caused by needle movement affects the cavitation distribution in the nozzle hole, and the spread angle of the velocity vector at the nozzle exit.
Technical Paper

VVT+Port Deactivation Application on a Small Displacement SI 4 Cylinder 16V Engine: An Effective Way to Reduce Vehicle Fuel Consumption

2003-03-03
2003-01-0020
During recent years several VVT devices have been developed, in order to improve either peak power and low end torque, or part load fuel consumption of SI engines. This paper describes an experimental activity, concerning the integration of a continuously variable cam phaser (CVCP), together with an intake port deactivation device, on a small 4 cylinder 16V engine. The target was to achieve significantly lower fuel consumption under normal driving conditions, compared to a standard MPFI application. A single hydraulic cam phaser is used to shift both the intake and the exhaust cams to retarded positions, at constant overlap. Thus, high EGR rates in the combustion chamber and late intake valve closure (“reverse Miller cycle”) are combined, in order to reduce pumping losses at part load.
Technical Paper

VDC, The Vehicle Dynamics Control System of Bosch

1995-02-01
950759
VDC is a new active safety system for road vehicles which controls the dynamic vehicle motion in emergency situations. From the steering angle, the accelerator pedal position and the brake pressure the desired motion is derived while the actual vehicle motion is derived from the yaw rate and the lateral acceleration. The system regulates the engine torque and the wheel brake pressures using traction control components to minimize the difference between the actual and the desired motion. Included is also a safety concept which supervises the proper operation of the components and the software.
Technical Paper

ULEV and Fuel Economy - A Contradiction?

2000-03-06
2000-01-1209
The CBR (Controlled Burn Rate) technology for MPFI engines is known to enable the reduction of throttle losses of gasoline engines by high EGR (Exhaust Gas Recirculation) rates due to the dilution tolerance of the swirl charge motion system using port deactivation. Now a new aspect of CBR is being developed: extremely low emissions during and after cold start. This paper is focused on the combustion stability and low emission aspects of CBR technology. It is shown how engine out emissions and catalyst light off behavior of an engine can be significantly improved using port deactivation. The very stable combustion directly after engine start, extremely retarded ignition timings in combination with lean engine operation and open valve injection with minimized wall wetting lead to very low HC emissions and very high exhaust gas temperatures.
Technical Paper

Two-Cylinder Gasoline Engine Concept for Highly Integrated Range Extender and Hybrid Powertrain Applications

2010-09-28
2010-32-0130
The demand for improved fuel economy and the request for Zero Emission within cities require complex powertrains with an increasing level of electrification already in a short-termed timeframe until 2025. According to general expectations the demand for Mild-Hybrid powertrains will increase significantly within a broad range of implementation through all vehicle classes as well as on electric vehicles with integrated Range Extender (RE) mainly for use in urban areas. Whereas Mild Hybrid Vehicles basically use downsized combustion engines at current technology level, vehicles with a high level of powertrain electrification allow significantly different internal combustion engine (ICE) concepts. At AVL, various engine concepts have been investigated and evaluated with respect to the key criteria for a Range Extender application. A Wankel rotary engine concept as well as an inline 2 cylinder gasoline engine turned out to be most promising.
Technical Paper

Towards “Vision Zero”

2012-04-16
2012-01-0288
“Safe Driving” is an essential world-wide automotive requirement. The demand for “Safe Driving” is particularly high in industrialized countries, but it is also growing in the fast-developing nations. However, the annual reduction of serious traffic injuries and fatalities is still too low and the target to halve the number of people killed in traffic in the European Union from 2001 to 2010 has not been met. Essential influences to close this gap include legislation, road traffic regulations and monitoring, technical improvement of vehicles including active and passive safety systems, the increase of the equipment rate for safety functions and the re-design of traffic infrastructure for safety reasons. During the last years several countries in Europe started to consider these aspects combined in an integrated and general traffic safety policy, i.e. “Vision Zero” in Sweden.
Technical Paper

Time Resolved Spray Characterisation in a Common Rail Direct-Injection Production Type Diesel Engine Using Combined Mie/LIF Laser Diagnostics

2003-03-03
2003-01-1040
This study reports on laser-based diagnostics to temporally track the evolution of liquid and gaseous fuel in the cylinder of a direct injection production type Diesel engine. A two-dimensional Mie scattering technique is used to record the liquid phase and planar laser-induced fluorescence of Diesel is used to track both liquid and vaporised fuel. LIF-Signal is visible in liquid and gas phase, Mie scattering occurs only in zones where fuel droplets are present. Distinction between liquid and gaseous phase becomes therefore possible by comparing LIF- and Mie-Signals. Although the information is qualitative in nature, trends of spray evolution are accessible. Within this study a parametric variation of injection pressure, in-cylinder conditions such as gas temperature and pressure as well as piston geometry are discussed. Observations are used to identify the most sensitive parameters and to qualitatively describe the temporal evolution of the spray for real engine conditions.
Journal Article

Three-Way Catalyst Light-off During the NEDC Test Cycle: Fully Coupled 0D/1D Simulation of Gasoline Combustion, Pollutant Formation and Aftertreatment Systems

2008-06-23
2008-01-1755
The introduction of more stringent standards for engine emissions requires a steady development of engine control strategies in combination with efforts to optimize in-cylinder combustion and exhaust gas aftertreatment. With the goal of optimizing the overall emission performance this study presents the comprehensive simulation approach of a virtual vehicle model. A well established 1D gas dynamics and engine simulation model is extended by four key features. These are models for combustion and pollutant production in the cylinder, a model for the conversion of pollutants in a catalyst and a model for the effect of manifold wall wetting and fuel evaporation. The general species transport feature is linking these model together as it allows to transport an arbitrary number of chemical species in the entire system. Finally this highly detailed engine model is integrated into a vehicle model.
Technical Paper

Three Years Field Experience with the Lambda-Sensor in Automotive Control Systems

1980-02-01
800017
The temperature mappings of Lambda-Sensors in more than 30 different applications with closed-loop systems are presented. A new measuring technique is introduced, which allows to estimate the control performance of the Lambda-sensor in a laboratory test. The special influences of very hot (> 900 °C) and cold (< 400 °C) applications and of lead poisoning upon this control performance are discussed. As a result there are given some guidelines for the user of Lambda-sensors.
Technical Paper

Thermal Mechanical Fatigue Simulation of Cast iron Cylinder Heads

2005-04-11
2005-01-0796
The requirement for increased power and reduced emission and fuel consumption levels for diesel engines has created very stringent demands on the cylinder head design. In current engine development programs it is often observed that the limiting design factor is given by the thermal mechanical fatigue strength of the cylinder head. Design iterations resulting from durability testing are often necessary due to the lack of adequate simulation techniques for prediction thermal mechanical fatigue (TMF) failure. A complete lifetime simulation process is presented in this paper with emphasis on a newly developed material model for describing the constitutive behavior of cast iron (i.e. gray cast iron and compacted graphite iron) under thermal cycling. The material model formulation is based on a continuum-damage-mechanics (CDM) approach in order to account for the tension / compression anomaly of cast iron.
Technical Paper

The Single Cylinder OM441LA

2000-06-19
2000-01-1826
This paper will describe the design criteria for a single cylinder version of the Daimler-Chrysler OM441LA engine, which is currently used in multicylinder form as a key test in the ACEA A4 and A5 Oil Sequences. A test procedure has been developed for the single cylinder which provides results correlating with its multicylinder counterpart. The historical development of the procedure, correlation data, and economic benefits of use will be presented.
Technical Paper

The Influence of Inlet Port Design on the In-Cylinder Charge Mixing

1989-02-01
890842
A detailed investigation of the influence of intake port design on the in-cylinder flow structure during the intake and compression strokes, the mixing of the residual gas and a non-premixed intake charge, and the extent and pattern of charge inhomogenity near the time of combustion is described. The engine geometry is typical of the current lean-burn design and the study includes comparison of a helical (swirl) port and an idealized direct (no swirl) port designs. The results show marked dependence of the in-cylinder charge mixing characteristics on the intake port design. It is found that combinations of intake port design and manifold fuel injection timing produce favourably-stratified or irregularly-mixed charge distributions at the time of spark ignition. The consequences with respect to combustion characteristics are pointed out.
Technical Paper

The Influence of Hydro Grinding at VCO Nozzles on the Mixture Preparation in a DI Diesel Engine

1996-02-01
960867
The hydro grinding process can be used for valve covered orifice (VCO) nozzle production. A comprehensive numerical and experimental investigation was performed to determine the influence of hydro grinding (HG) at VCO nozzles on the mixture preparation in pressure charged high speed direct injection diesel engines. Samples of five hole VCO nozzles with defined grades of HG and different sprayhole diameters were selected to ensure a constant mass flow at a fixed feeding pressure for comparable engine tests. The simulation of the internal flow shows a more symmetrical velocity profile indicating less shear flow and lower turbulence intensities at the orifice with increased HG grade. From these results an enhanced atomization at further penetration depth and reduced atomization close to the nozzle could be expected. This was confirmed by measuring the spray momentum distribution and spray tip speed by mechanical and optical probes in high pressure vessels.
Technical Paper

The Impact of a Combustion Chamber Optimization on the Mixture Formation and Combustion in a CNG-DI Engine in Stratified Operation

2017-03-28
2017-01-0779
A previous study by the authors has shown an efficiency benefit of up to Δηi = 10 % for stratified operation of a high pressure natural gas direct injection (DI) spark ignition (SI) engine compared to the homogeneous stoichiometric operation with port fuel injection (PFI). While best efficiencies appeared at extremely lean operation at λ = 3.2, minimum HC emissions were found at λ = 2. The increasing HC emissions and narrow ignition time frames in the extremely lean stratified operation have given the need for a detailed analysis. To further investigate the mixture formation and flame propagation und these conditions, an optically accessible single-cylinder engine was used. The mixture formation and the flame luminosity have been investigated in two perpendicular planes inside the combustion chamber.
Technical Paper

The Computation of Airbag Deployment Times with the Help of Precrash Information

2002-03-04
2002-01-0192
Modern airbag control units are required to compute airbag deployment times with a high degree of precision. Therefore, the crash situation has to be recognized unambiguously, i.e. the goal is to obtain precise information about the relative speed, the barrier and the position of impact. One way of achieving this aim is via the implementation of a precrash sensing system using radar sensors. With these sensors, the relative closing velocity and the time-to-impact can be measured, thereby enabling a precise analysis of the crash situation. In this paper the algorithm for the computation of the airbag deployment decision will be presented.
X