Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Ways to Meet Future Emission Standards with Diesel Engine Powered Sport Utility Vehicles (SUV)

2000-03-06
2000-01-0181
The paper reports on the outcome of a still on-going joint-research project with the objective of establishing a demonstrator high speed direct injection (HSDI) diesel engine in a Sport Utility Vehicle (SUV) which allows to exploit the effectiveness of new engine and aftertreatment technologies for reducing exhaust emissions to future levels of US/EPA Tier 2 and Euro 4. This objective should be accomplished in three major steps: (1) reduce NOx by advanced engine technologies (cooled EGR, flexible high pressure common rail fuel injection system, adapted combustion system), (2) reduce particulates by the Continuous Regeneration Trap (CRT), and (3) reduce NOx further by a DeNOx aftertreatment technology. The current paper presents engine and vehicle results on step (1) and (2), and gives an outlook to step (3).
Technical Paper

Vw Lupo, the WorldS First 3-Liter Car

2000-11-01
2000-01-C044
After the success of the 4-cylinder 1.9-liter TDI and SDI direct-injection diesel engines in the Passat, Jetta and Polo classes, a new 3-cylinder TDI has been developed for use in the "Lupo 3L,' a compact car with a fuel consumption of 3 liters per 100 km. A new injection system with unit injectors, together with a fully electronically controlled engine management system featuring drive-by-wire- technology, a turbocharger with variable turbine geometry and a fully automated mechanical gearbox and clutch, for the first time ensures the potential to meet the stringent D4 exhaust emissions level and to achieve excellent fuel economy. The wheel-torque based engine and gearbox management systems optimize engine operation in terms of efficiency and emissions.
Technical Paper

Virtual Test Bed (VTB) Based Engine Calibration: Unique Approach to Ensure Engine Component Protection & to Meet WNTE in Different Environment Condition for Medium Duty Diesel Engine

2024-01-16
2024-26-0045
In view of BS-VI emission norms implementation in Commercial Vehicle (CV) application, the emissions are not only confirmed in standard condition but also in non-standard condition including different combinations of ambient temperature and pressure especially for checking the emission in WNTE cycle. However, achieving the emissions in different environmental conditions require physical emission calibration to be performed in those conditions. Hence, engine must be calibrated in climatic test chambers to ensure emission in different climatic conditions leading to multifold increase in the calibration effort. With addition of BS-VI emission regulation, After Treatment System (ATS) is a mandatory requirement to reduce the tail pipe emissions. Efficient functioning of ATS requires enough heating to convert the engine out emissions. Vehicle level Real Drive Emission (RDE) measurement without Conformity Factor (CF) limitation are added as an important legislative requirement.
Technical Paper

Vapor/Liquid Visualization with Laser-Induced Exciplex Fluorescence in an SI-Engine for Different Fuel Injection Timings

1996-05-01
961122
Laser-induced exciplex fluorescence has been applied to the mixture formation process in the combustion chamber of an optically-accessible four-cylinder in-line spark-ignition engine in order to distinguish between liquid and vapor fuel distribution during the intake and compression stroke for different injection timings. The naphthalene/N,N,N′N′-tetramethyl p-phenylene diamine (TMPD) exciplex system excited at 308nm with a broadband XeCl excimer laser is used to obtain spectrally-separated, single-shot fluorescence images of the liquid or vapor phase of the fuel. For different timings of the fuel injector this technique is applied to obtain crank-angle-resolved images of the resulting mixture in the combustion chamber. The fluorescence light is detected with an intensified slow-scan CCD-camera equipped with appropriate filters.
Technical Paper

Validation of Diesel Fuel Spray and Mixture Formation from Nozzle Internal Flow Calculation

2005-05-11
2005-01-2098
A series calculation methodology from the injector nozzle internal flow to the in-cylinder fuel spray and mixture formation in a diesel engine was developed. The present method was applied to a valve covered orifice (VCO) nozzle with the recent common rail injector system. The nozzle internal flow calculation using an Eulerian three-fluid model and a cavitation model was performed. The needle valve movement during the injection period was taken into account in this calculation. Inside the nozzle hole, cavitation appears at the nozzle hole inlet edge, and the cavitation region separates into two regions due to a secondary flow in the cross section, and it is distributed to the nozzle exit. Unsteady change of the secondary flow caused by needle movement affects the cavitation distribution in the nozzle hole, and the spread angle of the velocity vector at the nozzle exit.
Technical Paper

VVT+Port Deactivation Application on a Small Displacement SI 4 Cylinder 16V Engine: An Effective Way to Reduce Vehicle Fuel Consumption

2003-03-03
2003-01-0020
During recent years several VVT devices have been developed, in order to improve either peak power and low end torque, or part load fuel consumption of SI engines. This paper describes an experimental activity, concerning the integration of a continuously variable cam phaser (CVCP), together with an intake port deactivation device, on a small 4 cylinder 16V engine. The target was to achieve significantly lower fuel consumption under normal driving conditions, compared to a standard MPFI application. A single hydraulic cam phaser is used to shift both the intake and the exhaust cams to retarded positions, at constant overlap. Thus, high EGR rates in the combustion chamber and late intake valve closure (“reverse Miller cycle”) are combined, in order to reduce pumping losses at part load.
Technical Paper

Using Simulation and Optimization Tools to Decide Engine Design Concepts

2000-03-06
2000-01-1267
To meet the future demands on internal combustion engines regarding efficiency emissions and durability all design parameters must be optimized together. As a result of progress in material engineering fuel injection technology turbo charging technology exhaust gas after treatment there arise a multiplicity of possible parameters, such as: design parameters (compression ratio, dimensioning depending on peak firing pressure and mean effective pressure), injection system (rate shaping, split injection, injection pressure, hole diameter), air management (turbo charging with or without VTG, EGR rate) combustion optimization (timing, air access ratio). The interaction of all these parameters can not be over-looked without simulation and optimization tools. This is valid for the concept layout, the optimization and the application process later on.
Technical Paper

Unregulated Exhaust Gas Components of Modern Diesel Passenger Cars

1999-03-01
1999-01-0514
In this paper the emissions of regulated and unregulated exhaust gas components of a fleet of diesel passenger cars measured at Volkswagen in the eighties are compared with the results of a new investigation on modern direct-injection diesel vehicles. The potential of improved diesel fuels to reduce emissions is also examined. The emissions of regulated exhaust gas components as well as fuel consumption have been reduced significantly in the last years as a result of the systematic further development of conventional swirl chamber engines and exhaust gas after-treatment as well as the introduction of SDI/TDI engines. As was to be expected, this has also had a positive effect on the emissions of unregulated exhaust gas components. It has been possible, for example, to reduce the polycyclic aromatic hydrocarbons adsorbed on diesel particulates by more than 95%.
Technical Paper

ULEV Potential of a DI/TCI Diesel Passenger Car Engine Operated on Dimethyl Ether

1995-12-01
952754
The paper describes a feasibility test program on a 2 liter, 4 cylinder DI/TCI passenger car engine operated on the new alternative fuel Dimethyl Ether (DME, CH3 - O - CH3) with the aim of demonstrating its potential of meeting ULEV emissions (0.2 g/mi NOx in the FTP 75 test cycle) when installed in a full size passenger car. Special attention is drawn to the fuel injection equipment (FIE) as well as combustion system requirements towards the reduction of NOx and combustion noise while keeping energetic fuel consumption at the level of the baseline DI/TCI diesel engine. FIE and combustion system parameters were optimized on the steady state dynamometer by variation of a number of parameters, such as rate of injection, number of nozzle holes, compression ratio, piston bowl shape and exhaust gas recirculation.
Technical Paper

Time-Resolved Analysis of Soot Formation and Oxidation in a Direct-Injection Diesel Engine for Different EGR-Rates by an Extinction Method

1995-10-01
952517
The formation of soot during the first phase and the oxidation of soot during the later phase of the combustion in a direct-injection diesel engine have been investigated in detail by an extinction method. The experiments were performed in a 1.9 l near-production high-speed four-cylinder in-line direct-injection diesel engine for passenger cars for different rates of exhaust gas recirculation (EGR) and for different fuels. The measurements result in crank angle resolved and cycle-averaged soot mass concentrations in the piston bowl and the combustion chamber. The results show that with increasing EGR-rates the amount of soot formed is increased only slightly but the amount of soot oxidized during combustion decreases significantly. This is assumed to be the main reason for the increase of soot in the exhaust gas with increasing EGR-rates.
Technical Paper

Thermal Mechanical Fatigue Simulation of Cast iron Cylinder Heads

2005-04-11
2005-01-0796
The requirement for increased power and reduced emission and fuel consumption levels for diesel engines has created very stringent demands on the cylinder head design. In current engine development programs it is often observed that the limiting design factor is given by the thermal mechanical fatigue strength of the cylinder head. Design iterations resulting from durability testing are often necessary due to the lack of adequate simulation techniques for prediction thermal mechanical fatigue (TMF) failure. A complete lifetime simulation process is presented in this paper with emphasis on a newly developed material model for describing the constitutive behavior of cast iron (i.e. gray cast iron and compacted graphite iron) under thermal cycling. The material model formulation is based on a continuum-damage-mechanics (CDM) approach in order to account for the tension / compression anomaly of cast iron.
Technical Paper

The Response of a Closed Loop Controlled Diesel Engine on Fuel Variation

2008-10-06
2008-01-2471
An investigation was conducted to elucidate, how the latest turbocharged, direct injection Volkswagen diesel engine generation with cylinder pressure based closed loop control, to be launched in the US in 2008, reacts to fuel variability. A de-correlated fuels matrix was designed to bracket the range of US market fuel properties, which allowed a clear correlation of individual fuel properties with engine response. The test program consisting of steady state operating points showed that cylinder pressure based closed loop control successfully levels out the influence of fuel ignition quality, showing the effectiveness of this new technology for markets with a wide range of fuel qualities. However, it also showed that within the cetane range tested (39 to 55), despite the constant combustion mid-point, cetane number still has an influence on particulate and gaseous emissions. Volatility and energy density also influence the engine's behavior, but less strongly.
Technical Paper

The Performance of a Heavy Duty Diesel Engine with a Production Feasible DME Injection System

2001-09-24
2001-01-3629
Over the last few years there has been much interest in DiMethyl Ether (DME) as an alternative fuel for diesel cycle engines. It combines the advantages of a high cetane number with soot free combustion, which makes it eminently suitable for compression ignition engines. However, due to the fact that it is a gas under ambient conditions, it requires special fuel handling and a specially designed fuel injection system, which until recently, was not available. The use of the digital hydraulic operating system (DHOS), combined with a fuel handling system designed to cope with the properties of DME, enables the fuel to be safely and conveniently handled, In addition, the flexibility of the injection system enables injection pressures to be chosen according to the needs of the combustion.
Technical Paper

The New Diesel Engine in the New Beetle

1998-08-11
981950
With the introduction of the New Beetle, Volkswagen is offering the next generation of the 1.9l TDI engine. Several evolutionary changes have been made to the TDI concept to further improve its emissions, efficiency and performance. Emissions performance is improved with increased fuel injection pressure, optimized fuel injectors, calibration modifications, EGR cooling and reduced crevice volume in the combustion chamber. Efficiency is improved with new oil pump, vacuum pump and water pump drive systems and the elimination of an auxiliary driveshaft. Performance and efficiency is improved with the addition of a variable geometry turbocharger, which increases torque at lower engine speeds while preserving performance at higher engine speeds. This paper describes the many enhancements found in this latest generation TDI and gives a brief lookout to the future trends in diesel engine development such as a high pressure injection system with unit injectors.
Technical Paper

The Magnesium Hatchback of the 3-Liter Car: Processing and Corrosion Protection

2000-03-06
2000-01-1123
The hatchback of Volkswagen's 3 liter car (3 l fuel consumption per 100 km) consists of an inner component of die casting magnesium (AM50) covered with an aluminum panel from the outside. This hybrid design requires a new manufacturing process: The pre-coated magnesium part will be bonded and folded with the bare aluminum part. Corrosion protection is provided by an organic coating system which both protects against general corrosion and galvanic corrosion. The corrosion of the Al / Mg sandwich has been examined with hybrid samples which are similar to the hatchback. Several powder coatings (epoxy resin, polyester resin, hybrid resin), wet paints and cathodic electro-coating paints of different thicknesses and compositions have been applied to the magnesium part. They show that only powder coating provides adequate protection. Galvanic corrosion at the points of attachment of the hatchback might be possible (for example the bolted joint of the hinge).
Technical Paper

The Interaction Between Diesel Fuel Density and Electronic Engine Management Systems

1996-10-01
961975
The influence of fuel density on exhaust emissions from diesel engines has been investigated in a number of studies and these have generally concluded that particulate emissions rise with increasing density This paper reviews recent work in this area, including the European Programme on Emissions, Fuels and Engine Technologies (EPEFE) and reports on a complementary study conducted by CONCAWE, in cooperation with AVL List GmbH The project was carried out with a passenger car equipped with an advanced technology high speed direct injection turbocharged / intercooled diesel engine fitted with a complex engine management system which was referenced to a specific fuel density This production model featured electronic diesel control, closed loop exhaust gas recirculation and an exhaust oxidation catalyst Tests were carried out with two EPEFE fuels which excluded the influence of key fuel properties other than density (828 8 and 855 1 kg/m3) Engine operation was adjusted for changes in fuel density by resetting the electronic programmable, read-only memory to obtain the same energy output from the two test fuels In chassis dynamometer tests over the ECE15 + EUDC test cycle the major impact of fuel density on particulate emissions for advanced engine technology/engine management systems was established A large proportion of the density effect on particulate and NOx emissions was due to physical interaction between fuel density and the electronic engine management system Limited bench engine testing of the basic engine showed that nearly complete compensation of the density effect on smoke (particulate) emissions could be achieved when no advanced technology was applied
Technical Paper

The Effect of Different Air Path Based ATS Thermal Management Strategy on a Non- EGR Medium Duty Diesel Engine’s Performance and Emissions

2024-01-16
2024-26-0038
The major objective of this paper is to develop thermal management strategy targeting optimum performance of Selective Catalytic Reduction (SCR) catalyst in a Medium Duty Diesel Engine performing in BS6 emission cycles. In the current scenario, the Emissions Norms are becoming more stringent and with the introduction of Real Drive Emission Test (RDE) and WHTC test comprising of both cold and hot phase, there is a need to develop techniques and strategies which are quick to respond in real time to cope with emission limit especially NOx. SCR seems to be suitable solution in reducing NOx in real time. However, there are limitations to SCR operating conditions, the major being the dosing release conditions which defines the gas temperature at which DEF (Diesel Exhaust Fluid) can be injected as DEF injection at lower gas temperatures than dosing release will lead to Urea deposit formation and will significantly hamper the SCR performance.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

The Clean Heavy Duty Diesel Engine of the Future: Strategies for Emission Compliance

2001-11-01
2001-28-0045
The internal combustion engines, and the heavy duty truck diesel engines in particular, are facing a severe challenge to cope with the upcoming stringent emission legislation world-wide. To comply with these low limits, engine internal measures must be complemented with exhaust gas aftertreatment systems with sophisticated electronic control. A reduction of NOx and particulate emission of more than 90% is required. Various strategies to comply with Euro 4, 5 and US 2007 are discussed, also in view of engine performance, fuel economy and cooling system load. Recommendations are given for the most suitable approach to comply also in future with emission legislation in Europe and the United States.
Technical Paper

The Application of a New Software Tool for Separating Engine Combustion and Mechanical Noise Excitation

2007-05-15
2007-01-2376
The optimization of engine NVH is still an important aspect for vehicle interior and exterior noise radiation. To optimize the engine noise / vibration contribution to the vehicle, a complete understanding of the excitation mechanism, the vibration transfer in the engine structure and the radiation efficiency of the individual engine components is required. Concerning the excitation within the engine, a very efficient analysis methodology for the combustion- and mechanical excitation within gasoline and diesel engines has been developed. Out of this methodology a software tool has been designed for a fast, efficient and detailed evaluation of the combustion- and mechanical excitation content of total engine noise. Recently this software tool has been successfully applied in engine NVH optimization work for defining the best optimization strategies for engine NVH reduction and noise quality improvement especially with respect to combustion excitation.
X