Refine Your Search

Topic

Author

Search Results

Technical Paper

Variation in Corrosion Resistance of Trivalent Chromate Coating Depending on Type of Zinc Plating Bath

2006-04-03
2006-01-1671
Trivalent chromate coating is replacing the conventional hexavalent chromate coating applied on zinc plating. Zinc plating uses one of three types of plating baths (zincate, cyanide and chloride) according to the characteristics required of subject parts. It has been recognized that trivalent chromate coating provides different corrosion resistance depending on the type of zinc plating bath used. Zinc plating with chromate coating were analyzed to clarify the cause of the corrosion resistance variation with the type of zinc plating bath. It has been revealed that the chromate coating thickness and the condition of top SiO2 layer vary with the type of zinc plating bath, resulting in corrosion resistance variation.
Technical Paper

The application of the damage & fracture material model to crashworthiness evaluations for Aluminum cars.

2003-10-27
2003-01-2776
In an evaluation of crashworthiness for the cars made of aluminum alloys, the evaluation considering fracture phenomenon comes to be needed because conventional aluminum alloys have low fracture strain (10-20%). In case of the development of a B-Pillar made by die cast, if crack occurrence, furthermore, separation of a part can be estimated by using CAE in crashworthiness evaluations, we can reduce the number of prototype makings and the cost of development using expensive dies. Therefore, we performed crashworthiness evaluations by CAE using some sort of a damage & fracture material model. It is known as “Orthotropic damage & fracture model”.
Technical Paper

The Development of Fluid for Small-Sized and Light Weight Viscous Coupling

1998-05-04
981446
For viscous couplings(VCs) as a driving force transmission system of vehicles, requirement of torque characteristics has been getting very stringent. Because the torque characteristics significantly affect four wheel drive vehicles' abilities such as traction performance and driving stability. Furthermore, the recent concerns on high fuel economy, low pollution and low cost require that design of VCs should be increasingly compact, light weighted and excellent in transmitted torque's stability. It is an easy way to increase viscosity of viscous coupling fluids(VCFs) for the compact design of the VC. But it might cause increase in heat load and wear of plates which resulted in degradation of the VCF. The degradation affects VCF's viscosity and impairs stability in torque transmission. Therefore it is indispensable to develop high viscosity VCF which is excellent in long-term viscosity's stability.
Technical Paper

Study of Plastic Plating Using Highly Concentrated Ozonized Water Pretreatment

2005-04-11
2005-01-0618
In order to achieve good adhesive properties, typical decorative plastic plating technology uses a chromic acid process that creates an anchor effect. Due to environmental concerns with hexavalent chromium, there is a need to find alternative processes. Pretreatment using highly concentrated ozonized water was investigated as a novel approach to achieving this goal. In the conventional chromic acid process, strong adhesion between plating membranes is achieved by roughing the ABS (acrylonitrile-butadiene-styrene) resin surface by approximately 1 um. On the other hand, the highly concentrated ozonized water process achieves good adhesion with a smooth resin by changing the resin from ABS to ASA (acrylate-styrene-acrylonitrile). It was discovered that the difference in this strength of adhesion was the difference in resin surface strength (existence of deterioration or otherwise).
Technical Paper

Structure and properties of a nano-carbon composite surface coating for roll-to-roll manufacturing of titanium fuel cell bipolar plates

2023-09-29
2023-32-0138
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks.
Technical Paper

Research in Aluminum Matrix Composites for Improvement in Damping Capacity

2005-04-11
2005-01-1389
We have tried to improve damping capacity of an aluminum alloy by means of dispersing ceramic particles (low damping SiC and high damping NdNbO4) of different sizes and volume fractions in the aluminum alloy by powder metallurgy. It is shown that the damping capacity is increased in every case accompanying an increase of Young's modulus. It is also shown that the intrinsic damping capacity of dispersed particles does not play a role in improving the damping capacity. The increase of the damping capacity seems to be attributed to dislocations breakaway, interaction of fine particles and dislocations, and relaxation of interface between ceramic particles and aluminum matrix.
Technical Paper

New Conceptual Lead Free Overlays Consisted of Solid Lubricant for Internal Combustion Engine Bearings

2003-03-03
2003-01-0244
Two types of new conceptual lead free overlays are developed for automotive internal combustion(IC) engine bearings. The overlays are consisted of molybdenum disulfide(MoS2) and polyamideimide(PAI) resin for binding. One of the overlays is suitable for diesel engines with higher unit load and the other overlay is suitable for gasoline engines with higher sliding velocity. Both overlays indicate good corrosion resistance and wear resistance comparing with conventional lead base overlay. Moreover, higher fatigue resistance is obtained in combination with high performance lead free bearing alloy. These new bearings have the potential to become alternative materials to conventional copper lead bearings with lead base overlay.
Technical Paper

Method of Improving Side Impact Protection Performance by Induction Hardening of Body Reinforcement Compatibility Between Safety and Weight Reduction in Body Engineering

1998-02-23
980550
A technique for induction-hardening local portions of vehicle body reinforcements press-formed of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technique for increasing the tensile strength of sheet steel was practically applied to the front floor cross member and center pillar reinforcement. Owing to this method, the weight of body reinforcements can be decreased. New induction-hardening systems have also been developed for the present technique. One is an apparatus which allows induction-hardening a part with a three-dimensionally curved surface. Another is a straightening quench technique used to retain the same dimensional accuracy as the original press-formed part.
Technical Paper

Metallic Powder Coating for Aluminum Wheels

2004-03-08
2004-01-1671
From the viewpoint of measures for environmental issues, the amount of solvents in paint for aluminum wheels needs to be minimized. Environmentally friendly powder coatings have been used widely for primer coating and clear coating, but there is no precedent for its use for base coating. This time, we optimized the condition of surface treatment of pigment and hardening behavior of constituent resin in the melting process and succeeded in developing a metallic powder coating for aluminum wheels that fulfills the appearance and the quality requirements of aluminum wheels.
Journal Article

Low-viscosity Gear Oil Technology to Improve Wear at Tapered Roller Bearings in Differential Gear Unit

2016-10-17
2016-01-2204
Torque loss reduction at differential gear unit is important to improve the fuel economy of automobiles. One effective way is to decrease the viscosity of lubricants as it results in less churning loss. However, this option creates a higher potential for thin oil films, which could damage the mechanical parts. At tapered roller bearings, in particular, wear at the large end face of rollers and its counterpart, known as bearing bottom wear is one of major failure modes. To understand the wear mechanism, wear at the rolling contact surface of rollers and its counterpart, known as bearing side wear, was also observed to confirm the wear impact on the tapered roller bearings. Because gear oils are also required to avoid seizure under extreme pressure, the combination of a phosphorus anti-wear agent and a sulfurous extreme pressure agent are formulated.
Technical Paper

Joining Technologies for Aluminum Body-Improvement of Self-piercing Riveting

2003-10-27
2003-01-2788
The experimental research vehicle ES3 body was realized by using various aluminum-joining technologies: MIG welding, laser welding, self-piercing riveting. These technologies were applied selectively to make full use of their individual characteristics, according to the body structure and joined materials. Of these technologies, self-piercing riveting is advantageous in several respects. Aiming to expand the application range of riveting technology, we developed a die that prevents cracks in joining aluminum casting, and a method to improve rivet driving in thick, multi-pile portion. We further studied the feasibility of aluminum rivets. This paper outlines the ES3 body structure and it's joining technologies used and introduces the further improvements we developed concerning self-piercing riveting.
Technical Paper

JCAPII Cross Check Tests of Fast Electrical Mobility Spectrometers for Evaluation of Accuracy

2007-10-29
2007-01-4081
Crosscheck tests of fast electrical mobility spectrometers, Differential Mobility Spectroscopy (DMS) and Engine Exhaust Particle Sizer(EEPS), were conducted to evaluate the accuracy of fine particle measurement. Two kinds of particles were used as test particles for the crosscheck test of instruments: particles emitted from diesel vehicles and diluted in a full dilution tunnel, and particles generated by CAST. In the steady state tests, it was confirmed that the average concentration of each instrument was within the range of ±2σ from the average concentration of all the same type of instruments. In the transient tests, it is verified that the instruments have almost equal sensitivity. For application of the fast electrical mobility spectrometers to evaluation of particle number and size distributions, it is essential to develop a calibration method using reference particle counters and sizers (CPC, SMPS, etc.) and maintenance methods appropriate for each model.
Technical Paper

Influence of New Engine Oil Additives on the Properties of Fluoroelastomers

1998-10-19
982437
Fluoroelastmers are well known for their resistance to heat and fluids, and have become major material for crankcase oil seals. On the other hand, new additive formulations are developed for engine lubricants used for fuel economic gasoline engines. In this paper, the effects of those additives on properties of fluoroelastmers are investigated. The results of the immersion tests of both test plaques and oil seal products indicate that dithiocarbamates, friction modifier, have hardening effects on fluoroelastmers. The fluoroelastmer deterioration mechanism is determined by analysis of elastmer samples after immersion in oil.
Journal Article

Influence of Bio Diesel Fuel on Engine Oil Performance

2010-05-05
2010-01-1543
To evaluate the influence of FAME, which has poor oxidation stability, on engine oil performance, an engine test was conducted under large volumes of fuel dilution by post-injection. The test showed that detergent consumption and polymerization of FAME were accelerated in engine oil, causing a severe deterioration in piston cleanliness and sludge protection performance of engine oil.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2007-04-16
2007-01-1056
In order to enhance the catalytic performance of the NOx Storage-Reduction Catalyst (NSR Catalyst), the sulfur tolerance of the NSR catalyst was improved by developing new support and NOx storage materials. The support material was developed by nano-particle mixing of ZrO2-TiO2 and Al2O3 in order to increase the Al2O3-TiO2 interface and to prevent the ZrO2-TiO2 phase from sintering. A Ba-Ti oxide composite material was also developed as a new NOx storage material containing highly dispersed Ba. It was confirmed that the sulfur tolerance and activity of the developed NSR catalyst are superior to that of the conventional one.
Technical Paper

Improvement of Adhesion Properties between Epoxy Resin and Primer and between Primer and Ni Plating in Hybrid Vehicle Power Semiconductor Module under High Temperature Conditions

2016-04-05
2016-01-0500
In this report, adhesion mechanism between epoxy resin and primer and between primer and Ni platting in Hybrid vehicle (HV) was investigated. Adhesion forces are thought to be a combination of mechanical bond forces (such as anchor effect), chemical bond forces and physical bond forces (such as hydrogen bonding and Van der Waals force). Currently there is insufficient understanding of the adhesion mechanism. In particular, the extent to which the three bond forces contribute to adhesion strength. So the adhesion mechanism of polyimide primers was analyzed using a number of different methods, including transmission electron microscope (TEM) and atomic force microscope (AFM) observation, to determine the contributions of the three bonding forces. Molecular simulation was also used to investigate the relationship between adhesion strength and the molecular structure of the primer.
Technical Paper

Hardfaced Valve and P/M Valve Seat System for CNG and LPG Fuel Engines

2005-04-11
2005-01-0718
When adapted for use in automotive engines, CNG and LPG are considered environmentally friendly compared to gasoline or diesel fuel. However, when these gaseous fuels are used, wear of the valve seat insert and valve face increases if materials meant for use with gasoline are adopted. In comparison to a gasoline engine, the oxide membrane that is formed on the sliding surfaces of the valve face and valve seat insert is limited. As a consequence, adhesion occurs and increased wear of these components is the result. Based on analysis materials that are more compatible with these gaseous fuels were developed.
Journal Article

Friction Coefficient Variation Mechanism under Wet Condition in Disk Brake (Variation Mechanism Contributing Wet Wear Debris)

2016-09-18
2016-01-1943
This paper deals with friction under wet condition in the disk brake system of automobiles. In our previous study, the variation of friction coefficient μ was observed under wet condition. And it was experimentally found that μ becomes high when wear debris contains little moisture. Based on the result, in this paper, we propose a hypothesis that agglomerates composed of the wet wear debris induce the μ variation as the agglomerates are jammed in the gaps between the friction surfaces of a brake pad and a disk rotor. For supporting the hypothesis, firstly, we measure the friction property of the wet wear debris, and confirm that the capillary force under the pendular state is a factor contributing to the μ variation. After that, we simulate the wear debris behavior with or without the capillary force using the particle-based simulation. We prepare the simulation model for the friction surfaces which contribute to the friction force through the wear debris.
Technical Paper

Examination of Crack Growth Behavior in Induction Hardened Material under Torsional Fatigue

2011-04-12
2011-01-0198
Since wear resistance and fatigue strength are key requirements for chassis components, induction hardening is widely used to apply compressive stress for controlling crack growth. Therefore, it is crucial that the influence of defects is examined with compressive residual stress applied to parts. In this report, the relationship between crack depth and compressive residual stress is evaluated using a cylindrical specimen and a torsional fatigue test. The test results were found to be consistent with CAE simulations performed in advance. In the future, it will be necessary to make this method applicable to product design to further improve vehicle safety performance.
Technical Paper

Development of a New Valvetrain Wear Test - The Sequence IVB Test

2016-04-05
2016-01-0891
The study described in this paper covers the development of the Sequence IVB low-temperature valvetrain wear test as a replacement test platform for the existing ASTM D6891 Sequence IVA for the new engine oil category, ILSAC GF-6. The Sequence IVB Test uses a Toyota engine with dual overhead camshafts, direct-acting mechanical lifter valvetrain system. The original intent for the new test was to be a direct replacement for the Sequence IVA. Due to inherent differences in valvetrain system design between the Sequence IVA and IVB engines, it was necessary to alter existing test conditions to ensure adequate wear was produced on the valvetrain components to allow discrimination among the different lubricant formulations. A variety of test conditions and wear parameters were evaluated in the test development. Radioactive tracer technique (RATT) was used to determine the wear response of the test platform to various test conditions.
X