Refine Your Search

Topic

Author

Search Results

Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Three-Dimension Deposited Soot Distribution Measurement in Silicon Carbide Diesel Particulate Filters by Dynamic Neutron Radiography

2011-04-12
2011-01-0599
Exhaust emissions are well known to have adverse impacts on human health. Studies have demonstrated that there is an association between ambient particulate matter (PM) levels and various harmful cardiopulmonary conditions. Soot exhaust from diesel engines can be a significant contributor to airborne pollutants. A key component in PM level control for a diesel engine is a diesel particulate filter (DPF). This device traps soot while allowing other exhaust gases to pass unhindered. However, the performance of diesel particulate filters can change with increasing soot loadings and thus may require regeneration or replacement. Improved understanding of diesel particulate filters is dependent upon the knowledge of the actual soot loading and the soot distribution within the DPF. Neutron radiography (NR) has been identified as an effective means of non-destructively identifying hydrogen or carbon adsorbed in PM.
Journal Article

Study of Oxide Supports for PEFC Catalyst

2017-03-28
2017-01-1179
Polymer electrolyte membrane fuel cell (PEFC) systems for fuel cell vehicles (FCVs) require both performance and durability. Carbon is the typical support material used for PEFC catalysts. However, hydrogen starvation at the anode causes high electrode potential states (e.g., 1.3 V with respect to the reversible hydrogen electrode) that result in severe carbon support corrosion. Serious damage to the carbon support due to hydrogen starvation can lead to irreversible performance loss in PEFC systems. To avoid such high electrode potentials, FCV PEFC systems often utilize cell voltage monitor systems (CVMs) that are expensive to use and install. Simplifying PEFC systems by removing these CVMs would help reduce costs, which is a vital part of popularizing FCVs. However, one precondition for removing CVMs is the adoption of a durable support material to replace carbon.
Technical Paper

Study of Large OSC Materials (Ln2O2SO4) on the Basis of Sulfur Redox Reaction

2009-04-20
2009-01-1071
Three-way catalyst shows high performance under stoichiometric atmosphere. The CeO2-ZrO2 based materials (CZ) are added as a buffer of O2 concentration. To improve the catalyst performance the larger O2 storage capacity (OSC) are needed. Theoretically, the sulfur oxidation-reduction reaction moves oxygen 8 times larger than cerium. We focused on this phenomenon and synthesized Ln2O2SO4 as a new OSC material. The experimental result under model gas shows that the OSC of Ln2O2SO4 is 5 times lager than CZ.
Technical Paper

Study of Improvements in NOx Reduction Performance on Simultaneous Reduction System of PM and NOx

2005-10-24
2005-01-3884
Performance improvements were studied for the diesel particulate and NOx reduction system (DPNR), a system that simultaneously reduces NOx and Particulate Matter (PM) from diesel engine exhaust gas. The experimental system (hereinafter called the “dual DPNR”) consists of two DPNR catalysts arranged in parallel, each provided with an exhaust throttle valve downstream to control the exhaust gas flow to the catalyst, plus a fuel injector that precisely controls the air-fuel ratio and the catalyst bed temperature. The fuel injector is used to supply a rich mixture to the DPNR catalyst, and the flow of exhaust gas is switched between the two catalysts by operating the exhaust throttle valves alternately. Tests were conducted with the engine running at steady state. The results indicated that the NOx reduction performance dramatically improved and the loss of fuel economy from the NOx reduction reduced.
Journal Article

Study of Alternative Oxygen Reduction Electrocatalyst for Pt Based on Transition Metal Chalcogenides

2008-04-14
2008-01-1265
The development of an alternative oxygen reduction electrocatalyst to platinum based electrocatalysts is critical for practical use of the polymer electrolyte membrane fuel cell (PEMFC). Transition metal sulfide chalcogenides have recently been reported as a possible candidate for Pt replacement. Our work focused on chalcogenides composed of ruthenium, molybdenum, and sulfur (RuMoS). We elucidate the factors affecting electrocatalytic activity of carbon supported RuXMoY SZ catalyst. This was demonstrated through a correlation of oxygen reduction reaction (ORR) activity of the catalysts with structural changes resulting from designed changes in sulfur composition in the catalysts.
Technical Paper

Simultaneous PM and NOx Reduction System for Diesel Engines

2002-03-04
2002-01-0957
A new after-treatment system called DPNR (Diesel Particulate-NOx Reduction System) has been developed for simultaneous and continuous reduction of particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust gas. This system consists of both a new catalytic technology and a new diesel combustion technology which enables rich operating conditions in diesel engines. The catalytic converter for the DPNR has a newly developed porous ceramic structure coated with a NOx storage reduction catalyst. A fresh DPNR catalyst reduced more than 80 % of both PM and NOx. This paper describes the concept and performance of the system in detail. Especially, the details of the PM oxidation mechanism in DPNR are described.
Journal Article

Reaction Mechanism Analysis of Di-Air-Contributions of Hydrocarbons and Intermediates

2012-09-10
2012-01-1744
The details of Di-Air, a new NOx reduction system using continuous short pulse injections of hydrocarbons (HC) in front of a NOx storage and reduction (NSR) catalyst, have already been reported. This paper describes further studies into the deNOx mechanism, mainly from the standpoint of the contribution of HC and intermediates. In the process of a preliminary survey regarding HC oxidation behavior at the moment of injection, it was found that HC have unique advantages as a reductant. The addition of HC lead to the reduction or metallization of platinum group metals (PGM) while keeping the overall gas atmosphere in a lean state due to adsorbed HC. This causes local O₂ inhibition and generates reductive intermediate species such as R-NCO. Therefore, the specific benefits of HC were analyzed from the viewpoints of 1) the impact on the PGM state, 2) the characterization of intermediate species, and 3) Di-Air performance compared to other reductants.
Journal Article

On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels

2019-12-19
2019-01-2150
The knock-suppression effectiveness of exhaust-gas recirculation (EGR) can vary between implementations that take EGR gases after the three-way catalyst and those that use pre-catalyst EGR gases. A main difference between pre-and post-catalyst EGR gases is the level of trace species like NO, UHC, CO and H2. To quantify the role of NO, this experiment-based study employs NO-seeding in the intake tract for select combinations of fuel types and compression ratios, using simulated post-catalyst EGR gases as the diluent. The four investigated gasoline fuels share a common RON of 98, but vary in octane sensitivity and composition. To enable probing effects of near-zero NO levels, a skip-firing operating strategy is developed whereby the residual gases, which contain trace species like NO, are purged from the combustion chamber. Overall, the effects of NO-seeding on knock are consistent with the differences in knock limits for preand post-catalyst EGR gases.
Technical Paper

New Cordierite Diesel Particulate Filter Material for the Diesel Particulate - NOx Reduction System.

2004-03-08
2004-01-0953
The regulation of emissions discharged from diesel engines has become stricter worldwide. The regulatory values allowed for particulate matter (PM) as well as NOx will be lowered, especially in the Europe Euro 5, the U.S. EP 07, and the new Japanese long-term regulations. Since there is a tradeoff between the PM and NOx that are discharged from diesel engines, new emission reduction measures will be needed in order to greatly reduce both at the same time. By coating DPFs (Diesel Particulate Filters), which have been studied before, with NOx storage reduction catalysts, it has been found that simultaneous reduction of PM and NOx is possible, and so research was carried out in order to optimize a DPF for this type of system use. The DPF developed was used in the European DPNR (Diesel Particulate-NOx Reduction System) subject vehicles by Toyota Motor Corporation, and actual trial runs in Europe were performed.
Technical Paper

New Concept Exhaust Manifold for Next-Generation HEV and PHEV

2023-09-29
2023-32-0062
HEV and PHEV require an improved aftertreatment system to clean the exhaust gas in various driving situations. The efficiency of aftertreatment system is significantly influenced by the residence time of the gas in a catalyst which gas flow has generally strong pulsation. Simulation showed up to 70% reduction of exhaust gas emission if the pulsation could be completely attenuated. A new concept exhaust manifold was designed to minimize pulsation flow by wall impingement, with slight increase of pressure loss. Experimental results with new concept exhaust manifold showed exhaust gas emission were reduced 16% at cold condition and 40% at high-load condition.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

Model-Based OBD Logic Utilizing Adsorption and Desorption Model of NH3 in SCR Catalyst

2016-04-05
2016-01-0960
Urea selective catalytic reduction (SCR) systems are a promising technology for helping to lower NOx emissions from diesel engines. These systems also require on-board diagnostic (OBD) systems to detect malfunctioning catalysts. Conventional OBD methodology for a SCR catalyst involves the measurement of NOx concentration downstream of the catalyst. However, considering future OBD regulations, erroneous diagnostics may occur due to variations in the actual environment. Therefore, to enhance OBD accuracy, a new methodology was examined that utilizes NH3 slip as a new diagnostic parameter in addition to NOx. NH3 slip increases as the NOx reduction performance degrades, because both phenomena are based on deterioration in the capability of the SCR catalyst to adsorb NH3. Furthermore, NH3 can be measured by existing NOx sensors because NH3 is oxidized to NO internally. To make use of NH3 slip, an estimation model was developed.
Technical Paper

Influence of Sulfur Concentration in Gasoline on NOx Storage - Reduction Catalyst

1999-10-25
1999-01-3501
Influence of sulfur poisoning on NOx storage - reduction catalysts (NSR catalysts) was examined using both model gas and an actual vehicle. Deterioration of NSR catalysts is explained as the balance of sulfate formation in lean operating conditions and the amount of sulfate decomposed under rich operating conditions. This study focused on sulfate decomposition characteristics of NSR catalysts. First, sulfate decomposition characteristics of an NSR catalyst were examined in a model gas test. It was found that the initial temperature of SOx release was higher than the sulfur poisoning temperature. Crystal growth of sulfate by increasing temperature was assumed, and hence suppressed SOx release. Second, various sulfur concentrations (8 - 500 ppm) in gasoline were used for vehicle durability. The duration of one durability cycle was 1,260 seconds, including a 60 second regeneration of sulfur poisoning (AFR 14.2, 700 °C).
Journal Article

In-Situ Liquid TEM Study on the Degradation Mechanism of Fuel Cell Catalysts

2016-04-05
2016-01-1192
Electrode catalyst (platinum) degradation represents a major challenge to the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) in Fuel Cell Vehicles (FCVs). While various mechanisms have been proposed and investigated previously, there is still a need to develop in situ imaging techniques that can characterize and provide direct evidence to confirm the degradation process. In the present study, we report an in situ transmission electron microscopy (TEM) method that enables real time, high-resolution observation of carbon-supported platinum nanoparticles in liquid electrolyte under working conditions. By improving the design of the Micro Electro Mechanical Systems (MEMS) sample holder, the migration and aggregation of neighboring platinum nanoparticles could be visualized consistently and correlated to applied electrode potentials during aging process (i.e., cyclic voltammetry cycles).
Technical Paper

In Situ Observation of Catalysis Reactions Using Transmission Electron Microscope

2008-04-14
2008-01-1266
Transmission electron microscope (TEM) is a powerful tool for studying catalyst materials at nano-size and/or atomic level. Conventional TEM usually needs to be observed at room temperature in high vacuum conditions. A gaseous atmosphere and high temperature condition may change the properties of catalyst materials. Recently we developed an in situ observation system in TEM for observing the oxidation and reduction under a gas atmosphere at high temperature. Using the new in situ observation system in TEM, the morphological changes of the nano particle and support were observed in the heated gaseous atmosphere at atomic level in real time.
Technical Paper

Improvement of PN Filtration Efficiency of Coated GPF – Study of Improvement of PN Filtration Efficiency and Reduction of Pressure Drop

2023-09-29
2023-32-0124
This research aimed to improve the PN filtration efficiency of a catalyst coated gasoline particulate filter (cGPF) to meet the next generation of emissions regulations for internal combustion engines. This paper proposes a concept that improves the PN filtration performance while maintaining low pressure drop by forming a thin PM trap layer on the surface of the cGPF substrate. The design guidelines for the coating particle size and coating amount of the PM trap layer were investigated, and actual manufacturing issues were also identified. The validity of this concept and guidelines was then verified on an actual vehicle.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2007-04-16
2007-01-1056
In order to enhance the catalytic performance of the NOx Storage-Reduction Catalyst (NSR Catalyst), the sulfur tolerance of the NSR catalyst was improved by developing new support and NOx storage materials. The support material was developed by nano-particle mixing of ZrO2-TiO2 and Al2O3 in order to increase the Al2O3-TiO2 interface and to prevent the ZrO2-TiO2 phase from sintering. A Ba-Ti oxide composite material was also developed as a new NOx storage material containing highly dispersed Ba. It was confirmed that the sulfur tolerance and activity of the developed NSR catalyst are superior to that of the conventional one.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2002-03-04
2002-01-0732
In order to further improve the performance of NOx storage-reduction catalysts (NSR catalysts), focus was placed on their high temperature performance deterioration via sulfur poisoning and heat deterioration. The reactions between the basicity or acidity of supports and the storage element, potassium, were analyzed. It was determined that the high temperature performance of NSR catalysts is enhanced by the interaction between potassium and zirconia, which is a basic metal oxide. Also, a new zirconia-titania complex metal oxides was developed to improve high temperature performance and to promote the desorption of sulfur from the supports after aging.
Technical Paper

Impact Study of High Biodiesel Blends on Performance of Exhaust Aftertreatment Systems

2008-10-06
2008-01-2494
Biodiesel Fuel (BDF) Research Work Group works on identifying technological issues on the use of high biodiesel blends (over 5 mass%) in conventional diesel vehicles under the Japan Auto-Oil Program started in 2007. The Work Group conducts an analytical study on the issues to develop measures to be taken by fuel products and vehicle manufacturers, and to produce new technological findings that could contribute to the study of its introduction in Japan, including establishment of a national fuel quality standard covering high biodiesel blends. For evaluation of the impacts of high biodiesel blends on performance of diesel particulate filter system, a wide variety of biodiesel blendstocks were prepared, ranging from some kinds of fatty acid methyl esters (FAME) to another type of BDF such as hydrotreated biodiesel (HBD). Evaluation was mainly conducted on blend levels of 20% and 50%, but also conducted on 10% blends and neat FAME in some tests.
X