Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Building Blocks for a Hybrid ElectroThermal-ElectroMechanical Simulation Tool

2011-06-13
2011-38-0035
The demand for low power ice protection systems and the introduction of further regulations for flight into known icing will stretch current technologies and the analytical tools required to support them. This paper considers an approach in the development of an analysis tool for the assessment of a combined electro-thermal and electro-mechanical deicing system. The tool development is part of a 4 year EU programme (project ‘HETEMS’ - Hybrid ElectroThermal and ElectoMechanical Simulation) and will include the icing wind tunnel testing of a hybrid deicing system to provide validation data. The various analytical components required by the system are presented and some of the issues in applying them are discussed. The tool will aim to provide both a 2D and 3D capability and allow both conceptual and detailed design strategies.
Technical Paper

Analysis for the Design and Test of an Ice Protection System for a Scoop Intake

2011-06-13
2011-38-0055
The European Union (EU) ‘Clean Sky’ [1] Joint Technology Initiative (JTI) is a research programme aimed at developing breakthrough technologies which will minimise the impact of aviation on the environment. Within this, the System for Green Operations (SGO) Integrated Technology Demonstrator (ITD) looks to improve aircraft operation through management of energy and mission trajectory. As part of the SGO ITD, a series of environmental icing tests have been conducted on an ice protected, acoustically protected, electrically powered, scoop intake and channel. The range of conditions tested included in-flight icing (CS-25 Appendix C, same as 14 CFR 25), super-cooled large droplets (proposed 14 CFR 25 Appendix O, [2]), snow and ice crystal conditions as well as ground icing in freezing fog conditions.
X