Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

THE EFFECT OF BIODIESEL ON THE ELECTRICAL PROPERTIES OF AUTOMOTIVE ELASTOMERIC COMPOUNDS

2020-01-13
2019-36-0327
The lack of electrical conductivity on materials, which are used in automotive fuel systems, can lead to electrostatic charges buildup in the components of such systems. This accumulation of energy can reach levels that exceed their capacity to withstand voltage surges, which considerably increases the risk of electrical discharges or sparks. Another important factor to consider is the conductivity of the commercially available fuels, such as biodiesel, which contributes to dissipate these charges to a proper grounding point in automobiles. From 2013, the diesel regulation in Brazil have changed and the levels of sulfur in the composition of diesel were reduced considerably, changing its natural characteristic of promoting electrostatic discharges, becoming more insulating.
Technical Paper

Recent Advances in Swelling Resistance of Graphene-Based Rubber Compounds

2020-04-14
2020-01-0769
Recently, graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. This review will focus on the latest studies and recent progress in the swelling resistance of rubber compounds due to the addition of graphene and its derivatives. This work will present the state-of-the-art in this subject area and will highlight the advantages and current limitations of the use of graphene for potential future researches.
Technical Paper

Potential Application of Rubber-Graphene Compounds in the Automotive Parts

2024-01-08
2023-36-0028
Rubber is one of the most used materials currently selected to produce automotive parts, but, for specific applications, some improvement is required in its properties through the addition of some components to the rubber compound formulation. Because of that, mechanical, thermal, and chemical properties are enhanced in order to meet strict requirements of the vast range of application of the rubber compounds. In addition to improving material properties, the combination of different substances, also aims to improve processability and reduce the costs of the final product. Recently, the use of nanofillers has been very explored because of their distinctive properties and characteristics. Among the nanofillers under study, graphene is known for its high-barrier property, thermal and electrical conductivities, and good mechanical properties.
Technical Paper

Mechanical Properties of Biorenewable Blends of Polyamide 10,10 and Polyamide 6,10

2017-03-28
2017-01-0490
In recent years, a special attention has been given to the environment protection, as evidenced by an increased commitment of governments and industries for a better use of energy and for reducing the levels of vehicle emissions (CO2). The use of renewable and bio-based plastics in the automotive sector is being considered as alternative solution to the conventional petroleum-based polymeric materials. In the present work, biobased polymer blends were formulated using two polyamides made from biorenewable resources. Polyamide 10,10 (PA1010) and polyamide 6,10 (PA610) were melt mixed in different compositions and the mechanical properties of the blends were investigated by tensile evaluations. The mechanical properties of the blends show intermediate values compared to the pure polymers. Significant improvements on these properties could be observed with the incorporation of PA610 in the blends.
X