Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Unsteady Aerodynamic Response of a Vehicle by Natural Wind Generator of a Full-Scale Wind Tunnel

2017-03-28
2017-01-1549
In recent years, the automotive manufacturers have been working to reduce fuel consumption in order to cut down on CO2 emissions, promoting weight reduction as one of the fuel saving countermeasures. On the other hand, this trend of weight reduction is well known to reduce vehicle stability in response to disturbances. Thus, automotive aerodynamic development is required not only to reduce aerodynamic drag, which contributes directly to lower fuel consumption, but also to develop technology for controlling unstable vehicle behavior caused by natural wind. In order to control the unstable vehicle motion changed by external contour modification, it is necessary to understand unsteady aerodynamic forces that fluctuating natural wind in real-world environments exerts on vehicles. In the past, some studies have reported the characteristics of unsteady aerodynamic forces induced by natural winds, comparing to steady aerodynamic forces obtained from conventional wind tunnel tests.
Journal Article

Improvement in Vehicle Motion Performance by Suppression of Aerodynamic Load Fluctuations

2015-04-14
2015-01-1537
This study focuses on fluctuations in the aerodynamic load acting on a hatchback car model under steady-state conditions, which can lead to degeneration of vehicle motion performance due to excitation of vehicle vibrations. Large eddy simulations were first conducted on a vehicle model based on a production hatchback car with and without additional aerodynamic devices that had received good subjective assessments by drivers. The numerical results showed that the magnitudes of the lateral load fluctuations were larger without the devices at Strouhal numbers less than approximately 0.1, where surface pressure fluctuations indicated a negative correlation between the two sides of the rear end, which could give rise to yawing and rolling vibrations. Based on the numerical results, wind-tunnel tests were performed with a 28%-scale hatchback car model.
Journal Article

Experimental Investigation of Aeroacoustic Cabin Noise in Unsteady Flow by Means of a New Turbulence Generating Device

2017-03-28
2017-01-1545
With advancement of aeroacoustic wind tunnels and CAE technology, aeroacoustic cabin noise in steady flow has been improved. On the other hand, passenger comfort is also impacted by aeroacoustic noise in unsteady flow. There have been comparatively few studies into this area, and the mechanism remains unclear. Considering the future proliferation of autonomous driving, drivers will pay more attention to cabin noise than previously, and aeroacoustic noise is expected to become more prominent. Thus, the reduction of fluctuating aeroacoustic noise is important. Most of the previous research relied on road tests, which don’t provide reproducible conditions due to changing atmospheric and traffic conditions. To solve these problems, research using devices that generate turbulence are being conducted. However, the fluctuations of flow generated in previous studies were small, failing to simulate on-road conditions sufficiently.
Technical Paper

Correlation Tests Between Japanese Full-Scale Automotive Wind Tunnels Using the Correction Methods for Drag Coefficient

2005-04-11
2005-01-1457
This paper describes results of the correlation tests between several full-scale automotive wind tunnels in Japan. The tests were carried out during FY 2003 by members of the working group for wind tunnel correlation test, which was organized in JSAE Vehicle Aerodynamics Research Committee. Five wind tunnels were selected, i.e., three open test section type wind tunnels and two closed ones. Four test models were selected, i.e., sedan, station wagon, minivan and hatch back car, all of which are current production models. Tests were done with EADE test conditions. Correlation formulas for drag coefficient, which are based on the previous methods by Mercker and Wiedemann [13] and Mercker [3, 10] respectively for open and closed test section type wind tunnels, were used. Also considered were the differences of the boundary layer thickness between five wind tunnels.
X