Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Significance of Environment for Performance of Structural Adhesive Bonding

1997-02-24
970012
The development of a durable adhesive bonding technology for joining of aluminium automotive structures requires a full understanding of the importance of the environment on the chemistry of the adhesively bonded system. This paper describes the accelerated testing procedures used by Alcan to provide information on the significance of environmental factors on adherend surface, the bonding interface and adhesive and so establish the best combination of adhesive and surface pretreatment for good long term durability. The stress/humidity test provides information on adhesive and interface performance, while the neutral salt spray test illustrates durability and corrosion resistance of the pretreatment. Outdoor exposure testing provides the means of comparing the accelerated tests with real life durability.
Technical Paper

The Recycling and Reclamation of Metal-Matrix Composites

1993-03-01
930182
The recycling and reclamation of metal-matrix composites (MMC's) are critical aspects of the commercialization process. By recycling, we mean the economic processing of MMC scrap for reuse as composite. Reclamation refers to the separation and recovery of the individual components of the composite, i.e., the various aluminum alloys and ceramic particles. Three forms of MMC wrought alloy scrap have been considered; i.e., D. C. (direct chill) cast log ends, extrusion butts, and cut extrusion scrap. Recycling each of these forms of scrap back into D. C. cast extrusion billet has been demonstrated. This has been accomplished by recycling the scrap back through the basic mixing process. Various ratios of scrap to virgin composite have been explored and optimum blends are being studied. Similarly, for MMC foundry alloy (high silicon) gates and risers produced in shape-casting, fluxing and degassing techniques have been developed so these may be recycled back into useful castings.
Technical Paper

The Properties and Characteristics of Two New Aluminum Automotive Closure Panel Materials

1996-02-01
960164
The need to reduce or contain a weight increase in new automobile designs is leading to the use of more and more aluminum and, in particular, to the adoption of aluminum outer body panels in a number of volume production vehicles. This has been made possible by improvements in the properties of heat treatable aluminum sheet materials and also from a better understanding of the issues related to part design and manufacturing. The alloy AA6111 has become the material of choice due to its unique combination of formability and paint bake strengthening and is used, for example, in the deck lids of the current Ford Crown Victoria, Grand Marquis and Taurus/Sable models. A modified process for this alloy has now been developed which significantly increases its paint bake strengthening and can be used either to obtain even better dent resistance or to reduce the gauge and hence obtain cost and weight savings.
Technical Paper

The Lincoln Mark VIII Cast Aluminium Suspension Control Arm (Parallel Development)

1994-03-01
940874
An A356T61 cast aluminum lower suspension control arm has been put into production for the Lincoln Mark VIII. The mechanical requirements which drive the design for a critical part like this are discussed, together with some of the background knowledge needed to address the issues surrounding alloy and process selection. Particularly as it must be realized that the process impacts the degree to which the potential of the alloy can be realized. With this in mind, some of the research activities which have been spawned in parallel with the production activities are briefly covered. The sequence of events involved in the design and prototyping of the part itself are outlined, as is the implementation of a specialized low pressure casting line to produce the part. Part performance to date has been excellent and the quality controls and test methods which have been put in place to see that this remains so are also covered.
Technical Paper

How to Weld Bond Aluminium with Structural Adhesives

1997-02-24
970018
Weld bonding of aluminium autobody structures offers automotive vehicle manufacturers the opportunity of achieving significant weight reduction, compared to equivalent steel structures. Further, this is achievable using volume production manufacturing methods. This paper considers all key aspects of the weld bonding process, in particular the equipment requirements and the factors that are important in reliably achieving satisfactory structures. Methods of minimising damage to the adhesive bondline and assessment of spot weld quality are discussed. Using experience gained from extensive weld bonding trials, suitable parameters for robust weld bonding are recommended.
Technical Paper

Effects of Alloy Composition and Condition on Filiform Corrosion Performance of Cast Aluminum Wheels

1997-02-24
970021
The movement towards extended warranties in the automobile industry has focussed attention on corrosion performance of many components, particularly cast aluminum wheels. Filiform corrosion is of particular concern since it can severely affect the appearance of the wheel. The appearance and the choice of wheel design are the most attractive features to customers. In order to enhance the filiform corrosion resistance of cast aluminum wheels, cleaning, pretreatment, coating and alloy parameters are critical and need to be optimized. In this paper, the effects of alloy composition and condition on filiform corrosion are reviewed. A series of cast discs were prepared with variations in iron, zinc and copper levels around the standard A356.2 alloy composition. Apart from composition, certain specimens were subjected to different heat treatment and ageing conditions. The effects of porosity and different machining procedures were also evaluated.
Technical Paper

A New Approach for Robust High-Productivity Resistance Spot Welding of Aluminium

2003-03-03
2003-01-0575
Process consistency and long electrode-life are essential requirements for users of resistance spot welding (RSW) in the automotive industry. RSW is the dominant joining process for manufacturing automotive body structures from sheet materials. The technique is cost effective (particularly in high-volume production), makes joints rapidly, is easy to automate, and it has no per-joint consumables. These beneficial attributes apply equally to RSW of aluminium automotive structures. However, there has been some reluctance in the industry to embrace spot welding for aluminium. This is because the electrode-life is much shorter than that experienced when welding traditional uncoated, plain-carbon steels, and there is a general lack of confidence in the consistency of the process. This paper describes a potentially non-intrusive method that addresses these concerns.
X