Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Modeling and Validation of Power-Split and P2 Parallel Hybrid Electric Vehicles

2013-04-08
2013-01-1470
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a freely-distributed, MATLAB/Simulink-based desktop application. Version 1.0 of the ALPHA tool was applicable only to conventional, non-hybrid vehicles and was used to evaluate off-cycle technologies such as air-conditioning, electrical load reduction technology and road load reduction technologies for the 2017-2025 LD GHG rule. The next version of the ALPHA tool will extend its modeling capabilities to include power-split and P2 parallel hybrid electric vehicles and their battery pack energy storage systems. Future versions of ALPHA will incorporate plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) architectures.
Technical Paper

Modeling and Validation of Lithium-Ion Automotive Battery Packs

2013-04-08
2013-01-1539
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a freely-distributed, MATLAB/Simulink-based desktop application. Version 1.0 of the ALPHA tool was applicable only to conventional, non-hybrid vehicles and was used to evaluate off-cycle technology such as air-conditioning, electrical load reduction technology and road load reduction technologies for the 2017-2025 LD GHG and Fuel Economy rule. The next version of the ALPHA tool extends its modeling capabilities to include power-split and P2 parallel hybrid electric vehicles and their battery pack energy storage systems. Future versions of ALPHA will incorporate plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) architectures.
Technical Paper

Modeling and Validation of 12V Lead-Acid Battery for Stop-Start Technology

2017-03-28
2017-01-1211
As part of the Midterm Evaluation of the 2017-2025 Light-duty Vehicle Greenhouse Gas Standards, the U.S. Environmental Protection Agency (EPA) developed simulation models for studying the effectiveness of stop-start technology for reducing CO2 emissions from light-duty vehicles. Stop-start technology is widespread in Europe due to high fuel prices and due to stringent EU CO2 emissions standards beginning in 2012. Stop-start has recently appeared as a standard equipment option on high-volume vehicles like the Chevrolet Malibu, Ford Fusion, Chrysler 200, Jeep Cherokee, and Ram 1500 truck. EPA has included stop-start technology in its assessment of CO2-reducing technologies available for compliance with the standards. Simulation and modeling of this technology requires a suitable model of the battery. The introduction of stop-start has stimulated development of 12-volt battery systems capable of providing the enhanced performance and cycle life durability that it requires.
Technical Paper

HIL Development and Validation of Lithium-Ion Battery Packs

2014-04-01
2014-01-1863
A Battery Test Facility (BTF) has been constructed at United States Environmental Protection Agency (EPA) to test various automotive battery packs for HEV, PHEV, and EV vehicles. Battery pack tests were performed in the BTF using a battery cycler, testing controllers, battery pack cooler, and a temperature controlled chamber. For e-machine testing and HEV power pack component testing, a variety of different battery packs are needed to power these devices to simulate in-vehicle conditions. For in-house e-machine testing and development, it is cost prohibitive to purchase a variety of battery packs, and also very time-consuming to interpret the battery management systems, CAN signals, and other interfaces for different vehicle manufacturers.
Journal Article

Emissions of PCDD/Fs, PCBs, and PAHs from a Modern Diesel Engine Equipped with Selective Catalytic Reduction Filters

2013-04-08
2013-01-1778
Exhaust emissions of seventeen 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, twelve WHO 2005 chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and nineteen polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine equipped with aftertreatment including a diesel oxidation catalyst (DOC) and wall flow copper or iron urea selective catalytic reduction filter (SCRF) were investigated. These systems differ from a traditional flow through urea selective catalytic reduction (SCR) catalyst because they place copper or iron catalyst sites in close proximity to filter-trapped particulate matter. These conditions could favor de novo synthesis of dioxins and furans. The results were compared to previously published results of modern diesel engines equipped with a DOC, catalyzed diesel particulate filter (CDPF) and flow through urea SCR catalyst.
Technical Paper

Effect of Current and SOC on Round-Trip Energy Efficiency of a Lithium-Iron Phosphate (LiFePO4) Battery Pack

2015-04-14
2015-01-1186
While equivalent circuit modeling is an effective way to model the performance of automotive Li-ion batteries, in some applications it is more convenient to refer to round-trip energy efficiency. Energy efficiency of either cells or full packs is seldom documented by manufacturers in enough detail to provide an accurate impression of this metric over a range of operating conditions. The energy efficiency of a full battery pack may also be subject to more variables than would be represented by extrapolating results obtained from a single cell, and can be more demanding to measure in an accurate and consistent manner. Roundtrip energy efficiency of a 22.8-kWh A123 Li-ion (Lithium Iron Phosphate, LiFePO4) battery pack was measured by applying a fixed quantity of charge and discharge current between 0.2C and 2C rates and at SOCs between 10% and 90% at an average temperature of 23°C.
Technical Paper

Complex Systems Method Applied to Identify Carbon Dioxide Emission Reductions for Light-Duty Vehicles for the 2020-2025 Timeframe

2012-04-16
2012-01-0360
The U.S. Environmental Protection Agency, U.S. Department of Transportation's National Highway and Traffic Safety Administration, and the California Air Resources Board have recently released proposed new regulations for greenhouse gas emissions and fuel economy for light-duty vehicles and trucks in model years 2017-2025. These proposed regulations intend to significantly reduce greenhouse gas emissions and increase fleet fuel economy from current levels. At the fleet level, these rules the proposed regulations represent a 50% reduction in greenhouse gas emissions by new vehicles in 2025 compared to current fleet levels. At the same time, global growth, especially in developing economies, should continue to drive demand for crude oil and may lead to further fuel price increases. Both of these trends will therefore require light duty vehicles (LDV) to significantly improve their greenhouse gas emissions over the next 5-15 years to meet regulatory requirements and customer demand.
X