Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Real World Operation of a Standard Lawn Mower Engine from a Scientific Perspective

2013-10-15
2013-32-9124
This paper introduces a research project on a spark ignition engine used in non-road applications. The aim is to illustrate the present situation as basis for comparison and to identify possible improvement potential in terms of performance, efficiency or exhaust and noise emissions. The study is carried out in two steps. First a standard walk-behind lawn mower is equipped with measuring instrumentation for recording the cutting forces and the engine variables during real world operation. The tests are carried out on three different lawn types and two different blade types are investigated. Consequently, in a second step the engine is analysed on the engine test bench in stationary and transient operating mode. A complete engine mapping is done regarding all relevant variables. Additionally to the outdoor tests, fuel consumption and engine out emissions are measured on the engine dynamometer. The recorded data enables a detailed analysis of the engine behaviour.
Technical Paper

Possibilities and Limits of 1D CFD Simulation Methodology for the Layout of 2-Stroke GDI Combustion System

2010-09-28
2010-32-0017
The development process of 2-stroke engines is characterized by limited CFD investigations in combination with long-term development phases on the test bench with high prototype costs. To reduce the costs and to realize shorter development time together with a higher prediction quality of the engine potential, a higher implementation level of 1D and 3D simulation tools into the development process is necessary. This publication outlines the 1D simulation methods in the layout phase of GDI combustion processes of 2-stroke engine categories. By means of conceptual investigations, the demands, the potential and the limits of 1D CFD simulation methodology are defined. Using a comparison between 1D and 3D or 1D/3D coupled simulation methods the limits of solely 1D simulation are shown. For advanced simulation tasks with a higher demand for prediction quality, the entire engine is simulated in 1D, whereas special parts of the engine design are simulated in a 3D model.
Technical Paper

Low Cost Range Extender Technology for Hybrid Electric City Scooters

2012-10-23
2012-32-0083
Electric driving is generally limited to short distances in an emission sensible urban environment. In the present situation with high cost electric storage and long charging duration hybridization is the key to enable electric driving. In comparison to the passenger car segment, where numerous manufacturers are already producing and offering different hybrid configurations for their premium class models, the two wheeler sector is not yet affected by this trend. The main reason for the retarded implementation of this new hybrid technology is its high system costs, as they cannot be covered by a reasonable product price. Especially for the two wheeler class L1e, with a maximum speed of 45 km/h and an engine displacement of less than 50 cm₃, the cost factor is highly important and decisive for its market acceptance, because the majority of vehicles are still low-cost products equipped with simple carbureted 2-stroke engines.
Technical Paper

Extended Expansion Engine with Mono-Shaft Cam Mechanism for Higher Efficiency - Layout Study and Numerical Investigations of a Twin Engine

2014-11-11
2014-32-0102
The automotive industry has made great efforts in reducing fuel consumption. The efficiency of modern spark ignition (SI) engines has been increased by improving the combustion process and reducing engine losses such as friction, gas exchange and wall heat losses. Nevertheless, further efficiency improvement is indispensable for the reduction of CO2 emissions and the smart usage of available energy. In the previous years the Atkinson Cycle, realized over the crank train and/or valve train, is attracting considerable interest of several OEMs due to the high theoretical efficiency potential. In this publication a crank train-based Atkinson cycle engine is investigated. The researched engine, a 4-stroke 2 cylinder V-engine, basically consists of a special crank train linkage system and a novel Mono-Shaft valve train concept.
Technical Paper

Basic Investigations on the Prediction of Spray-Wall and Spray-Fluid Interaction for a GDI Combustion Process

2010-09-28
2010-32-0030
This publication covers investigations on different 3D CFD models for the description of the spray wall and droplet-fluid interaction and the influence of these models on the mixture formation calculation results. Basic experimental investigations in a spray chamber and a flow tunnel as well as the corresponding 3D CFD simulation were conducted in order to clarify the prediction quality of the physical phenomena of spray-wall and spray-fluid interaction by the simulation. Influencing parameters such as the piston top temperature, piston bowl geometry, soot deposits on the piston top as well as flow velocity are investigated. This paper provides a direct link between the underlying simulation models of the mixture formation and actual real world combustion system development processes - underlining the importance of a close interaction of the model calibration and the development process.
Journal Article

Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools

2014-11-11
2014-32-0009
One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
X