Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Exhaust-Gas Aftertreatment Test Bench - A Contribution to Model-Based Development and Calibration of Engine Control Algorithmsa

2012-04-16
2012-01-0897
Introducing new exhaust-gas aftertreatment concepts at mass production level places exacting demands on the overall development process - from defining process engineering to developing and calibrating appropriate control-unit algorithms. Strategies for operating and controlling exhaust-gas aftertreatment components, such as oxidation and selective catalytic reduction catalysts (DOC and SCR), diesel particulate filters (DPF) and SCR on DPF systems (SCR/DPF), have a major influence on meeting statutory exhaust-emission standards. Therefore it is not only necessary to consider the physical behavior of individual components in the powertrain but also the way in which they interact as the basis for ensuring efficient operation of the overall system.
Technical Paper

Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics

2019-09-09
2019-24-0088
Detailed and fast combustion models are necessary to support design of Diesel engines with low emission and fuel consumption. Over the years, the importance of turbulence chemistry interaction to correctly describe the diffusion flame structure was demonstrated by a detailed assessment with optical data from constant-volume vessel experiments. The main objective of this work is to carry out an extensive validation of two different combustion models which are suitable for the simulation of Diesel engine combustion. The first one is the Representative Interactive Flamelet model (RIF) employing direct chemistry integration. A single flamelet formulation is generally used to reduce the computational time but this aspect limits the capability to reproduce the flame stabilization process. To overcome such limitation, a second model called tabulated flamelet progress variable (TFPV) is tested in this work.
Technical Paper

Transient Modeling of 3-Way Catalytic Converters

1994-03-01
940934
The modeling of transient phenomena occurring inside an automotive 3-way catalytic converter poses a significant challenge to the emissions control engineer. Since the significant progress that has been observed with steady-state models cannot be directly exploited in this direction, it is necessary to develop a fully transient model and computer code incorporating dynamic behaviour of the three way catalytic converter in a relatively simple and effective way. The Laboratory of Applied Thermodynamics (LAT), Aristotle University Thessaloniki, is cooperating with the Engine Direction of FIAT Research Center, in the development of a computer code fulfilling these objectives, within the framework of an EEC Brite EuRam cost shared project. The CRF and LAT modeling approaches, along with the underlying philosophy and experimental work, are presented in this paper.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Journal Article

Theoretical/Experimental Study on the Vibrations of a Car Engine

2008-04-14
2008-01-1211
The influence of the inertia properties (mass, centre of gravity location, and inertia tensor) on the dynamic behaviour of the engine-gearbox system of a car is studied in this paper, devoting particular attention to drivability and comfort. The vibration amplitudes and the natural frequencies of the engine-gearbox system have been considered. Additionally, the loads transmitted to the car body have been taken into account. Both the experimental and the theoretical simulations confirmed that the engine-gearbox vibrations in the range 10 - 15 Hz are particularly sensitive to slight variation of the inertia properties. The effects on engine-gearbox vibrations due to half-axles, exhaust system, pipes and inner engine-gearbox fluids have been highlighted.
Journal Article

The NH3 Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study

2011-04-12
2011-01-1319
Transient and steady-state kinetic data are herein presented to analyze the inhibiting effect of ammonia on the NH₃-SCR of NO at low temperatures over a Fe-zeolite commercial catalyst for vehicles. It is shown that in SCR converter models a rate expression accounting for NH₃ inhibition of the Standard SCR reaction is needed in order to predict the specific dynamics observed both in lab-scale and in engine test bench runs upon switching on and off the ammonia feed. Two redox, dual site kinetic models are developed which ascribe such inhibition to the spill-over of ammonia from its adsorption sites, associated with the zeolite, to the redox sites, associated with the Fe promoter. Better agreement both with lab-scale intrinsic kinetic runs and with engine test-bench data, particularly during transients associated with dosing of ammonia to the SCR catalyst, is obtained assuming slow migration of NH₃ between the two sites.
Technical Paper

The Automated Shift Transmission (AST) - Possibilities and Limits in Production-Type Vehicles

2001-03-05
2001-01-0881
State-of-the-art powertrain concepts with automatic transmission must comply with increasingly stringent legislation on emissions and fuel consumption while fulfilling or surpassing customers' expectations as to driveability. In this respect, automated manual transmissions (AMT) and automated shift transmissions (AST) must compete with conventional automatic transmissions (AT) and continuously variable transmissions (CVT). In order to exploit the theoretical advantages of ASTs and put them into practice, complex ECU functions are needed to coordinate engine and transmission. Adaptive control, sophisticated clutch management and an intelligent shifting strategy allow shifting quality and shifting points to be simultaneously optimized to the effect that performance and comfort are increased while fuel consumption is reduced.
Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
Journal Article

The 3Dcell Approach for the Acoustic Modeling of After-Treatment Devices

2011-09-11
2011-24-0215
In the last decades the continuously tightening limitations on pollutant emissions has led to an extensive adoption of after-treatment devices on the exhaust systems of modern internal combustion engines. While these devices are primarily introduced for reducing and controlling the emissions, they also play an important role influencing the wave motion inside the exhaust system and so affecting the acoustics and the performances of the engine. In this paper a novel approach is proposed for the modeling of two after-treatment devices: the catalyst and the Diesel Particulate Filter. The models are based on a fast quasi-3D approach, named 3Dcell, originally developed by the authors for the acoustic modeling of silencers. This approach allows to model the wave motion by solving the momentum equation along the three directions.
Technical Paper

Reversible Sulfur Poisoning of 3-way Catalyst linked with Oxygen Storage Mechanisms

2021-09-05
2021-24-0069
Even though the 3-way catalyst chemistry has been studied extensively in the literature, some performance aspects of practical relevance have not been fully explained. It is believed that the Oxygen Storage Capacity function of 3-way catalytic components dominates the behavior during stoichiometry transitions from lean to rich mode and vice versa whereas a number of mathematical models have been proposed to describe the dynamics of pollutant conversion. Previous studies have suggested a strong impact of Sulfur on the pollutant conversion after a lean to rich transition, which has not been adequately explained and modelled. Lean to rich transitions are highly relevant to catalyst ‘purging’ needed after exposure to high O2 levels (e.g. after fuel cut-offs). This work presents engine test measurements with an engine-aged catalyst that highlight the negative impact of Sulfur on pollutant conversion after a lean to rich transition.
Journal Article

Removal of NOx from Diesel Exhausts: The New “Enhanced NH3-SCR” Reaction

2010-04-12
2010-01-1181
Ammonia/urea-SCR is a mature technology, applied worldwide for the control of NOx emissions in combustion exhausts from thermal power plants, cogeneration units, incinerators and stationary diesel engines and more recently also from mobile sources. However a greater DeNOx activity at low temperatures is desired in order to meet more and more restrictive legislations. In this paper we report transient and steady state data collected over commercial Fe-ZSM-5 and V₂O₅-WO₃/TiO₂ catalysts showing high NOx reduction efficiencies in the 200 - 350°C T-range when NO and ammonia react with nitrates, e.g., in the form of an aqueous solution of ammonium nitrate. Under such conditions a new reaction occurs, the so-called "Enhanced SCR" reaction, 2 NH₃ + 2 NO + NH₄NO₃ → 3 N₂ + 5 H₂O.
Technical Paper

Quantitative Analysis of Low Pressure-Driven Spray Mass Distribution and Liquid Entrainment for SCR Application through a Mechanical Patternator

2017-03-28
2017-01-0965
The application of liquid aqueous Urea Solution (AUS) as reductant in SCR exhaust after-treatment systems is now a commonly accepted industry standard. Unfortunately, less acceptable are the associated difficulties caused by incomplete decomposition of the liquid, resulting in solid deposits which accumulate in the exhaust pipe downstream of the dosing components. The correct prediction of the spray pattern and, therefore, the spray impact on the walls is a key feature for the system optimization. A mechanical patternator, designed on the basis of CFD performance assessment, involving a Lagrangian representation of the dispersed liquid fully coupled with a 3D Eulerian description of the carrier phase, has been built and used to measure the spray mass distribution.
Technical Paper

Prediction of Driving Cycles by Means of a Co-Simulation Framework for the Evaluation of IC Engine Tailpipe Emissions

2020-06-30
2020-37-0011
The reliable prediction of pollutant emissions generated by IC engine powertrains during the WLTP driving cycle is a key aspect to test and optimize different configurations, in order to respect the stringent emission limits. This work describes the application of an integrated modeling tool in a co-simulation environment, coupling a 1D fluid dynamic code for engine simulation with a specific numerical code for aftertreatment modelling by means of a robust numerical approach, to achieve a complete methodology for detailed simulations of driving cycles. The main goal is to allow an accurate 1D simulation of the unsteady flows along the intake and exhaust systems and to apply advanced thermodynamic combustion models for the calculation of cylinder-out emissions.
Technical Paper

Potential of an Innovative, Fully Variable Valvetrain

2004-03-08
2004-01-1393
Under the persistent pressure to further reduce fuel consumption worldwide, it is necessary to advance the processes that influence the efficiency of gasoline engines. In doing so, harnessing the entire potential of fully variable mechanical valve trains will involve targeting efforts on optimizing all design parameters. A new type of valve timing system is used to portray thermodynamic and mechanical as well as electronic aspects of developing fully variable mechanical valve timing and lift systems
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Technical Paper

Polycyclic Aromatic Hydrocarbons Evolution and Interactions with Soot Particles During Fuel Surrogate Combustion: A Rate Rule-Based Kinetic Model

2021-09-05
2021-24-0086
Modeling combustion of transportation fuels remains a difficult task due to the extremely large number of species constituting commercial gasoline and diesel. However, for this purpose, multi-component surrogate fuel models with a reduced number of key species and dedicated reaction subsets can be used to reproduce the physical and chemical traits of diesel and gasoline, also allowing to perform CFD calculations. Recently, a detailed surrogate fuel kinetic model, named C3 mechanism, was developed by merging high-fidelity sub-mechanisms from different research groups, i.e. C0-C4 chemistry (NUI Galway), linear C6-C7 and iso-octane chemistry (Lawrence Livermore National Laboratory), and monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) (ITV-RWTH Aachen and CRECK modelling Lab-Politecnico di Milano).
Journal Article

Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System

2012-04-16
2012-01-1083
A physico-chemical model of a Cu-zeolite SCR/DPF-system involving NH₃ storage and SCR reactions as well as soot oxidation reactions with NO₂ has been developed and validated based on fundamental experimental investigations on synthetic gas test bench. The goal of the work was the quantitative modeling of NOx and NH₃ tailpipe emissions in transient test cycles in order to use the model for concept design analysis and the development of control strategies. Another focus was put on the impact of soot on SCR/DPF systems. In temperature-programmed desorption experiments, soot-loaded SCR/DPF filters showed a higher NH₃ storage capacity compared to soot-free samples. The measured effect was small, but could affect the NH₃ slip in vehicle applications. A bimodal desorption characteristic was measured for different adsorption temperatures and heating rates.
Technical Paper

Optimization Methodologies for DPF Substrate-catalyst Combinations

2009-04-20
2009-01-0291
As the Diesel Particulate Filter (DPF) technology is nowadays established, research is currently focusing on meeting the emission and durability requirements by proper system design. This paper focuses on the optimum combination between the catalytic coating and substrate structural properties using experimental and simulation methodologies. The application of these methodologies will be illustrated for the case of SiC substrates coated with innovative sol-gel coatings. Coated samples are characterized versus their uncoated counterparts. Multi-dimensional DOC and DPF simulation models are used to study several effects parametrically and increase our understanding on the governing phenomena. The comparative analysis of DOC/DPF systems covers filtration – pressure drop characteristics, CO/HC/NO oxidation performance, effect of washcoat amount and catalyst dispersion on oxidation activity and finally passive regeneration performance.
Journal Article

Numerical and Experimental Investigation on Vehicles in Platoon

2012-04-16
2012-01-0175
Many studies have been carried out to optimize the aerodynamic performances of a single car or a single vehicle. In present days the traffic increases and sophisticated technologies are developing to guarantee the drivers safety, to minimize the fuel consumption and be more environmentally friendly. Within this research area a new technique that is being studied is Platooning: this means that different vehicles travel in a configuration that minimizes the aerodynamic drag and therefore the fuel consumption and the longitudinal space. In the present study platoons with different vehicles and configurations are taken into account, to analyze the influence of car shape and relative distance between the vehicles. The research has been carried out using CFD techniques to investigate the different flow fields around different platoons, while wind tunnel tests have been used to validate the results of the CFD simulations.
Technical Paper

Numerical and Experimental Investigation on Passive Prechamber Configurations Able to Operate at Low Engine Speed and Load

2023-08-28
2023-24-0031
Turbulent Jet Ignition (TJI) represents one of the most effective solution to improve engine efficiency and to reduce fuel consumption and pollutants emission. Even if active prechambers allow a precise control of the air-fuel ratio close to the spark plug and the ignition of ultra-lean mixtures in the main chamber, passive prechambers represent a more attractive solution especially for passenger cars thanks to their simpler and cheaper configuration, which is easier to integrate into existing engines. The main challenge of passive prechambers is to find a geometry that allows to use TJI in the whole engine map, especially in the low load/speed region, without the use of a second sparkplug in the main chamber. To this end, this works reports a CFD study coupled with an experimental investigation to overcome this limitation.
X