Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Waste Heat Recovery for Light-Duty Truck Application Using ThermoAcoustic Converter Technology

2017-03-28
2017-01-0153
Nearly a third of the fuel energy is wasted through the exhaust of a vehicle. An efficient waste heat recovery process will undoubtedly lead to improved fuel efficiency and reduced greenhouse gas (GHG) emissions. Currently, there are multiple waste heat recovery technologies that are being investigated in the auto industry. One innovative waste heat recovery approach uses Thermoacoustic Converter (TAC) technology. Thermoacoustics is the field of physics related to the interaction of acoustic waves (sonic power) with heat flows. As in a heat engine, the TAC produces electric power where a temperature differential exists, which can be generated with engine exhaust (hot side) and coolant (cold side). Essentially, the TAC converts exhaust waste heat into electricity in two steps: 1) the exhaust waste heat is converted to acoustic energy (mechanical) and 2) the acoustic energy is converted to electrical energy.
Technical Paper

Virtual Test of Injector Design Using CFD

2014-09-30
2014-01-2351
Diesel exhaust aftertreatment solutions using injection, such as urea-based SCR and lean NOx trap systems, effectively reduce the emission NOx level in various light vehicles, commercial vehicles, and industrial applications. The performance of the injector plays an important role in successfully utilizing this type of technology, and the CFD tool provides not only a time and cost-saving, but also a reliable solution for extensively design iterations for optimizing the injector internal nozzle flow design. Inspired by this fact, a virtual test methodology on injector dosing rate utilizing CFD was proposed for the design process of injector internal nozzle flows.
Technical Paper

Virtual Exhaust-Gas Aftertreatment Test Bench - A Contribution to Model-Based Development and Calibration of Engine Control Algorithmsa

2012-04-16
2012-01-0897
Introducing new exhaust-gas aftertreatment concepts at mass production level places exacting demands on the overall development process - from defining process engineering to developing and calibrating appropriate control-unit algorithms. Strategies for operating and controlling exhaust-gas aftertreatment components, such as oxidation and selective catalytic reduction catalysts (DOC and SCR), diesel particulate filters (DPF) and SCR on DPF systems (SCR/DPF), have a major influence on meeting statutory exhaust-emission standards. Therefore it is not only necessary to consider the physical behavior of individual components in the powertrain but also the way in which they interact as the basis for ensuring efficient operation of the overall system.
Technical Paper

Transient Performance of an HC LNC Aftertreatment System Applying Ethanol as the Reductant

2012-09-24
2012-01-1957
As emissions regulations around the world become more stringent, emerging markets are seeking alternative strategies that align with local infrastructures and conditions. A Lean NOx Catalyst (LNC) is developed that achieves up to 60% NOx reduction with ULSD as its reductant and ≻95% with ethanol-based fuel reductants. Opportunities exist in countries that already have an ethanol-based fuel infrastructure, such as Brazil, improving emissions reduction penetration rates without costs and complexities of establishing urea infrastructures. The LNC performance competes with urea SCR NOx reduction, catalyst volume, reductant consumption, and cost, plus it is proven to be durable, passing stationary test cycles and adequately recovering from sulfur poisoning. Controls are developed and applied on a 7.2L engine, an inline 6-cylinder non-EGR turbo diesel.
Technical Paper

Transient Modeling of 3-Way Catalytic Converters

1994-03-01
940934
The modeling of transient phenomena occurring inside an automotive 3-way catalytic converter poses a significant challenge to the emissions control engineer. Since the significant progress that has been observed with steady-state models cannot be directly exploited in this direction, it is necessary to develop a fully transient model and computer code incorporating dynamic behaviour of the three way catalytic converter in a relatively simple and effective way. The Laboratory of Applied Thermodynamics (LAT), Aristotle University Thessaloniki, is cooperating with the Engine Direction of FIAT Research Center, in the development of a computer code fulfilling these objectives, within the framework of an EEC Brite EuRam cost shared project. The CRF and LAT modeling approaches, along with the underlying philosophy and experimental work, are presented in this paper.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

The Role of CFD Combustion Simulation in Diesel Burner Development

2009-10-06
2009-01-2878
Diesel burners introduce combustion of diesel fuel to raise exhaust gas temperature to Diesel Oxidization Catalyst (DOC) light-off or Diesel Particulate Filter (DPF) regeneration conditions, thereby eliminating the need of engine measures such as post-injections. Such diesel combustion requirement nevertheless poses challenges to burner development especially in combustion control and risk mitigation of DPF material failure. In particular, burner design must satisfy good soot distribution and heat distribution at DPF front face after meeting minimum requirements of ignition, heat release, and backpressure. In burner development, Computational Fluid Dynamics (CFD) models have been developed based on commercial codes for burner thermal and flow management with capability of predicting comprehensive physical and chemical phenomena including turbulence induced mixing, fuel injection, fuel droplet transport, diesel combustion, radiation, conjugate heat transfer and etc.
Technical Paper

The Automated Shift Transmission (AST) - Possibilities and Limits in Production-Type Vehicles

2001-03-05
2001-01-0881
State-of-the-art powertrain concepts with automatic transmission must comply with increasingly stringent legislation on emissions and fuel consumption while fulfilling or surpassing customers' expectations as to driveability. In this respect, automated manual transmissions (AMT) and automated shift transmissions (AST) must compete with conventional automatic transmissions (AT) and continuously variable transmissions (CVT). In order to exploit the theoretical advantages of ASTs and put them into practice, complex ECU functions are needed to coordinate engine and transmission. Adaptive control, sophisticated clutch management and an intelligent shifting strategy allow shifting quality and shifting points to be simultaneously optimized to the effect that performance and comfort are increased while fuel consumption is reduced.
Technical Paper

Temperature Effect in Exhaust System Fatigue Life Prediction

2011-04-12
2011-01-0783
Automotive exhaust system experiences vibratory and thermal loads. Bogey test had been the major validation method until recent years when the strain-life approach was adopted to evaluate component's fatigue life. In practice, when using the strain-life model to evaluate a component subjected to elevated temperature, temperature effect on component fatigue life is considered by introducing a temperature scale factor KC that is used to scale up the measured nominal strain, hence the mechanical load. This paper intends to propose a method to estimate KC by designing component bench tests at room temperature and at elevated temperature, respectively. Two major failure modes in the exhaust system are investigated and different temperature effects on the base metal fatigue and on the weld or heat-affected zone are analyzed.
Journal Article

Statistical Characterization, Pattern Identification, and Analysis of Big Data

2017-03-28
2017-01-0236
In the Big Data era, the capability in statistical and probabilistic data characterization, data pattern identification, data modeling and analysis is critical to understand the data, to find the trends in the data, and to make better use of the data. In this paper the fundamental probability concepts and several commonly used probabilistic distribution functions, such as the Weibull for spectrum events and the Pareto for extreme/rare events, are described first. An event quadrant is subsequently established based on the commonality/rarity and impact/effect of the probabilistic events. Level of measurement, which is the key for quantitative measurement of the data, is also discussed based on the framework of probability. The damage density function, which is a measure of the relative damage contribution of each constituent is proposed. The new measure demonstrates its capability in distinguishing between the extreme/rare events and the spectrum events.
Journal Article

Spatially Optimized Diffusion Alloys: A Novel Multi-Layered Steel Material for Exhaust Applications

2020-04-14
2020-01-1051
A novel Spatially Optimized Diffusion Alloy (SODA) material has been developed and applied to exhaust systems, which are an aggressive environment subject to high temperatures and loads, as well as excessive corrosion. Traditional stainless steels disperse chromium homogeneously throughout the material, with varying amounts ranging from 10% to 20% dependent upon its grade (e.g. 409, 436, 439, 441, and 304). SODA steels, however, offer layered concentrations of chromium, enabling an increased amount along the outer surface for much needed corrosion resistance and aesthetics. This outer layer, typically about 70μm thick, exceeds 20% of chromium concentration locally, but is less than 3% in bulk, offering selective placement of the chromium to minimize its overall usage. Since this layer is metallurgically bonded, it cannot delaminate or separate from its core, enabling durable protection throughout manufacturing processes and full useful life.
Technical Paper

Reversible Sulfur Poisoning of 3-way Catalyst linked with Oxygen Storage Mechanisms

2021-09-05
2021-24-0069
Even though the 3-way catalyst chemistry has been studied extensively in the literature, some performance aspects of practical relevance have not been fully explained. It is believed that the Oxygen Storage Capacity function of 3-way catalytic components dominates the behavior during stoichiometry transitions from lean to rich mode and vice versa whereas a number of mathematical models have been proposed to describe the dynamics of pollutant conversion. Previous studies have suggested a strong impact of Sulfur on the pollutant conversion after a lean to rich transition, which has not been adequately explained and modelled. Lean to rich transitions are highly relevant to catalyst ‘purging’ needed after exposure to high O2 levels (e.g. after fuel cut-offs). This work presents engine test measurements with an engine-aged catalyst that highlight the negative impact of Sulfur on pollutant conversion after a lean to rich transition.
Technical Paper

Quality Control and Improvement Based on Design of Experiments and Statistical Data Analysis

2014-04-01
2014-01-0774
A modern definition of quality control and improvement is the reduction of variability in processes and products. The reduced variability can be directly translated into lower costs, better functions and fewer repairs. However, the final quality of processes and products is sometimes derived from other measured variables through some implicit or explicit functional relationships. Sometimes, a tiny uncertainty in a variable can produce a huge uncertainty in a derived quantity. Therefore, the propagation of uncertainty needs to be understood and the individual variables need to be well controlled. More importantly, the critical factors that affect quality the most should be identified and thoroughly investigated. Design of experiments and statistical control plays central roles in finding root cause of failure, reduction of variability and quality improvement.
Technical Paper

Probabilistic Isothermal, Anisothermal, and High-Temperature Thermo-Mechanical Fatigue Life Assessment and CAE Implementations

2016-04-05
2016-01-0370
Fatigue life assessment is an integral part of the durability and reliability evaluation process of vehicle exhaust components and systems. The probabilistic life assessment approaches, including analytical, experimental, and simulation, CAE implementation in particular, are attracting significant attentions in recent years. In this paper, the state-of-the-art probabilistic life assessment methods for vehicle exhausts under combined thermal and mechanical loadings are reviewed and investigated. The loading cases as experienced by the vehicle exhausts are first categorized into isothermal fatigue, anisothermal fatigue, and high-temperature thermomechanical fatigue (TMF) based on the failure mechanisms. Subsequently, the probabilistic life assessment procedures for each category are delineated, with emphasis on product validation.
Journal Article

Pressure Drop of Particulate Filters and Correlation with the Deposited Soot for Heavy-Duty Engines

2019-09-09
2019-24-0151
Particulate filters are a widely used emission control device on heavy-duty diesel engines. The accumulation of particulate matter, mostly consisting of soot, inside the filter results in increased filter pressure-drop (backpressure). This increased backpressure has been used by the on-board control systems as trigger for regeneration procedures, which aim to actively oxidize the accumulated soot. However, it is known that passive soot oxidation during normal operation affects the correlation between backpressure and the deposited soot mass in filter. Therefore, the backpressure alone cannot be a reliable trigger for regeneration. In this work we highlight operating conditions with very poor correlation between backpressure and accumulated soot mass in filter and evaluate the possible root causes. Experiments with several heavy-duty diesel engines and particulate filters were conducted on engine test bench.
Technical Paper

Potential of an Innovative, Fully Variable Valvetrain

2004-03-08
2004-01-1393
Under the persistent pressure to further reduce fuel consumption worldwide, it is necessary to advance the processes that influence the efficiency of gasoline engines. In doing so, harnessing the entire potential of fully variable mechanical valve trains will involve targeting efforts on optimizing all design parameters. A new type of valve timing system is used to portray thermodynamic and mechanical as well as electronic aspects of developing fully variable mechanical valve timing and lift systems
Technical Paper

Potential Failure Modes and Accelerating Test Strategy of Burner

2012-04-16
2012-01-0523
Driven by diesel engine emission regulation, more emission aftertretment products have been under development by Tenneco to address the Particular Matter (PM) and NOx reduction needs. The T.R.U.E. (Thermal Regeneration Unit for Exhaust) Clean active thermal management system is one of the examples to reduce PM. The system is designed to increase exhaust temperatures for DPF (Diesel Particulate Filter) regeneration. This product is exposed to high temperature and high oxidation. Therefore, thermal fatigue, creep, oxidation and the interaction become critical mechanism to be considered for its durability. One of the key challenges to validate this product is to find a way of accelerated testing for thermal, creep, and oxidation as well as for vibration. In this paper, accelerated durability test strategy for high temperature device like T.R.U.E Clean is addressed.
Journal Article

Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System

2012-04-16
2012-01-1083
A physico-chemical model of a Cu-zeolite SCR/DPF-system involving NH₃ storage and SCR reactions as well as soot oxidation reactions with NO₂ has been developed and validated based on fundamental experimental investigations on synthetic gas test bench. The goal of the work was the quantitative modeling of NOx and NH₃ tailpipe emissions in transient test cycles in order to use the model for concept design analysis and the development of control strategies. Another focus was put on the impact of soot on SCR/DPF systems. In temperature-programmed desorption experiments, soot-loaded SCR/DPF filters showed a higher NH₃ storage capacity compared to soot-free samples. The measured effect was small, but could affect the NH₃ slip in vehicle applications. A bimodal desorption characteristic was measured for different adsorption temperatures and heating rates.
Technical Paper

Physical Modeling of Automotive Turbocharger Compressor: Analytical Approach and Validation

2011-09-13
2011-01-2214
Global warming is a climate phenomenon with world-wide ecological, economic and social impact which calls for strong measures in reducing automotive fuel consumption and thus CO2 emissions. In this regard, turbocharging and the associated designing of the air path of the engine are key technologies in elaborating more efficient and downsized engines. Engine performance simulation or development, parameterization and testing of model-based air path control strategies require adequate performance maps characterizing the working behavior of turbochargers. The working behavior is typically identified on test rig which is expensive in terms of costs and time required. Hence, the objective of the research project “virtual Exhaust Gas Turbocharger” (vEGTC) is an alternative approach which considers a physical modeled vEGTC to allow a founded prediction of efficiency, pressure rise as well as pressure losses of an arbitrary turbocharger with known geometry.
Technical Paper

Optimization of a Urea SCR System for On-Highway Truck Applications

2010-10-05
2010-01-1938
In order to satisfy tightening global emissions regulations, diesel truck manufacturers are striving to meet increasingly stringent Oxides of Nitrogen (NOx) reduction standards. The majority of heavy duty diesel trucks have integrated urea SCR NOx abatement strategies. To this end, aftertreatment systems need to be properly engineered to achieve high conversion efficiencies. A EuroV intent urea SCR system is evaluated and failed to meet NOx conversion targets with severe urea deposit formation. Systematic enhancements of the design have been performed to enable it to meet targets, including emission reduction efficiency via improved reagent mixing, evaporation, distribution, back pressure, and removing of urea deposits. Multiple urea mixers, injector mounting positions and various system layouts are developed and evaluated, including both CFD analysis and full scale laboratory tests.
X