Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Time-Triggered Architecture Based on FlexRay: Roadmap from High-Speed Data Networking to Safety-Relevant Automotive Applications

2006-10-16
2006-21-0042
Future applications in the automotive domain such as distributed control functions need a highly dependable communication system. The current FlexRay standard already provides high transmission speeds and addresses deterministic data communication. This paper shows how to enhance the safety properties for handling a new set of applications and speeding up the communication even more. The concept of Layered FlexRay is based on the FlexRay protocol and addresses the requirements of safety-relevant applications in a distributed communication network. An implementation of this approach is depicted with a Safety Core hardware chip. It is designed to handle the communication between the FlexRay system beneath and the application on the host CPU above, providing highly efficient data management and execution of safety functions which otherwise would have to be executed in software on the host CPU.
Technical Paper

Software Development Process and Software-Components for X-by-Wire Systems

2003-03-03
2003-01-1288
The term X-by-Wire is commonly used in the automotive industry to describe the notion of replacing current mechanical or hydraulic chassis and powertrain systems with pure electro-mechanical systems. The paper describes the current trends and the architecture of future chassis electronics systems. The first part of the paper covers the systems architecture of x-by-wire electronics systems. We describe the network and the software architecture in more detail. The paper also explains some of the software components, in particular the operating system and the communication layer. The second part of the paper gives a description of the current state of the development process for software intended for safety-relevant systems. A possible tool chain for this development process, current possibilities as well as limitations and challenges are described.
Technical Paper

Software Architecture Methods and Mechanisms for Timing Error and Failure Detection According to ISO 26262: Deadline vs. Execution Time Monitoring

2013-04-08
2013-01-0174
More electronic vehicle functions lead to an exponentially growing degree of software integration in automotive ECUs. We are seeing an increasing number of ECUs with mixed criticality software. ISO26262 describes different safety requirements, including freedom from interference and absence from error propagation for the software. These requirements mandate particular attention for mixed-criticality ECUs. In this paper we investigate the ability to guarantee that these safety requirements will be fulfilled by using established (deadline monitoring) and new error detection mechanisms (execution time monitoring). We also show how these methods can be used to build up safe and efficient schedules for today's and future automotive embedded real time systems with mixed criticality software.
Technical Paper

Properties and Limitation of an Oxide Coated Aluminum Brake Rotor

2018-10-05
2018-01-1877
The electrification of the powertrain and the thereto related recuperation of the electric engine saves the energy in the battery and thus reduces the thermally dissipated brake energy, which leads to lower brake rotor temperatures compared to combustion engine vehicles (ICEVs). These new conditions enable to reconsider brake disc concepts. Including lightweight design in heavy battery electric vehicles (BEVs) and the increasingly reliant corrosion resistance of brake rotors, Aluminum is a promising approach for new brake disc concepts. In the past, Aluminum brake disc concepts have already been deployed. For instance Aluminum Metal-Matrix Composite (Al-MMC) concepts in the Lotus Elise S1 and on the rear axle of the Volvo V40 [1]. The presented concept is a different approach and separates the friction system from the bulk Aluminum brake disc, achieved by coating of the friction rings.
Journal Article

Optimization of Lateral Vehicle Dynamics by Targeted Dimensioning of the Rim Width

2015-12-01
2015-01-9114
The aim of this investigation is the improvement of the lateral vehicle dynamics by optimizing the rim width. For that purpose, the rim width is considered as a development tool and configured with regard to specified targets. Using a specifically developed method of simulation, the influence of the rim width is analysed within different levels - starting at the component level “tyre” and going up to the level of the whole vehicle. With the help of substantial simulations using a nonlinear two-track model, the dimensioning of the rim width is brought to an optimum. Based on both, tyre and vehicle measurements, the theoretical studies can be proved in practice. As a result, the rim width has a strong influence on the behaviour of the tyre as well as on the overall vehicle performance, which emphasises its importance as a potential development tool within the development of a chassis.
Technical Paper

Optimization of Electric Vehicle Concepts Based on Customer-Relevant Characteristics

2012-04-16
2012-01-0815
Electric vehicles differ from conventionally powered vehicles in terms of many characteristics that are directly relevant to the customer. The most evident ones are the total driving range, which is limited by the battery capacity, and the different acceleration behavior, which is directly influenced by the electric motor's torque characteristics. Furthermore, there are many other vehicle characteristics, such as lateral dynamics, that are also strongly influenced by electrification. For all customer-relevant vehicle characteristics, it is important to know the necessary and optimal fulfillments in order to plan and evaluate new electrified vehicle concepts. Correlation functions can be used to convert values for technical characteristics to normalized customer satisfaction fulfillments. To evaluate the quality of a vehicle concept during the development process, a parametric cost function is defined.
Technical Paper

On Timing Requirements and a Critical Gap between Function Development and ECU Integration

2015-04-14
2015-01-0180
With the increasing complexity of electronic vehicle systems, one particular “gap” between function development and ECU integration becomes more and more apparent, and critical; albeit not new. The core of the problem is: as more functions are integrated and share the same E/E resources, they increasingly mutually influence and disturb each other in terms of memory, peripherals, and also timing and performance. This has two consequences: The amount of timing-related errors increases (because of the disturbance) and it becomes more difficult to find root causes of timing errors (because of the mutual influences). This calls for more systematic methods to deal with timing requirements in general and their transformation from function timing requirements to software architecture timing requirements in particular.
Technical Paper

Multicore vs Safety

2010-04-12
2010-01-0207
It is the beginning of a new age: multicore technology from the PC desktop market is now also hitting the automotive domain after several years of maturation. New microcontrollers with two or more main processing cores have been announced to provide the next step change in available computing power while keeping costs and power consumption at a reasonable level. These new multicore devices should not be confused with the specialized safety microcontrollers using two redundant cores to detect possible hardware failures which are already available. Nor should they be confused with the heterogeneous multicore solutions employing an additional support core to offload a single main processing core from real-time tasks (e.g. handling peripherals).
Technical Paper

Model-Predictive Energy Management for the Integration of Plug-In-Hybrid Electric Vehicles into Building Energy Systems

2013-04-08
2013-01-1443
In current research projects such as "Vehicle to Grid" (V2G), "Vehicle to Building" (V2B) or "Vehicle to Home" (V2H), plug-in vehicles are integrated into stationary energy systems. V2B or V2H therefore stands for intelligent networking between vehicles and buildings. However, in these projects the objective is mostly from a pure electric point of view, to smooth the load profile on a household level by optimized charging and discharging of electric vehicles. In the present paper a small energy system of this kind, consisting of a building and a vehicle, is investigated from a holistic point of view. Thermal as well as electrical system components are taken into account and there is a focus on reduction of overall energy consumption and CO₂ emissions. A predictive energy management is presented that coordinates the integration of a plug-in hybrid electric vehicle into the energy systems of a building. System operation is optimized in terms of energy consumption and CO₂ emissions.
Technical Paper

Investigations on Visibility of Digital Road Projections

2022-03-29
2022-01-0799
This paper covers research findings on digital projections on the road. Data is provided for the root cause analysis of non-existing distraction proven by several studies. The study describes if and in which geometrical space road projections are visible to other road traffic participants. Such participants can be e.g. oncoming, passing drivers or pedestrians standing aside the road. The paper data shows where projections are recognizable and assignable to the original intention of the projection. A grid was created to identify the areas where digital projections could be understood and where the digital projections were just illegible. A dominant factor is the grazing incidence. The photons are distributed over a larger area and only the driver’s view makes a virtual compression of the illuminated area in order to make the signals legible. The results show that distraction for other road participants is unlikely for any position outside very limited areas.
Technical Paper

Investigating the Perception of Pedestrians in Car 2 Human Communication: A Case Study Using Different Symbols and Dynamics to Communicate Via an Angular Restricted eHMI and Road Projections

2022-03-29
2022-01-0800
It has been shown that additional light signals are beneficial in the car 2 human communication. This study addresses detection, discomfort, brightness, recognition of intention and the perception of safety, of different symbols and dynamics used for communication. Splitted in two parts, the first use case is a lane crossing situation, where the car gives instructions to the pedestrian via an angular restricted external Human Machine Interface (eHMI) in the driver’s window. Results show that a symbol which blinks first and is then statically shown leads to fast and best detection. The intention of a red stop hand and green pedestrian is clearly understood. A combination of a near road-projection and the eHMI leads to confusion. An angle of 55° to 25° has been proven to be sufficient for displaying the information. In the second use case a cyclist is approaching the automated vehicle (AV) from behind and passes on a bicycle path.
Technical Paper

Integrated Chassis Control for Energy-Efficient Operation of a 2WD Battery-Electric Vehicle with In-Wheel Propulsion

2024-04-09
2024-01-2550
Battery-electric vehicles (BEVs) require new chassis components, which are realized as mechatronic systems mainly and support more and more by-wire functionality. Besides better controllability, it eases the implementation of integrated control strategies to combine different domains of vehicle dynamics. Especially powertrain layouts based on electric in-wheel machines (IWMs) require such an integrated approach to unfold their full potential. The present study describes an integrated, longitudinal vehicle dynamics control strategy for a battery electric sport utility vehicle (SUV) with an electric rear axle based on in-wheel propulsion. Especially the influence of electronic brake force distribution (EBD) and torque blending control on the overall performance are discussed and demonstrated through experiments and driving cycles on public road and benchmarked to results of previous studies derived from [1].
Technical Paper

Influence Parameters on Headlamp Performance in Rating Systems and Reality

2017-03-28
2017-01-1359
Headlamp performance has changed in the last 20 years significantly. Sealed beam lamps were replaced by VHAD, VOR and VOL types, but still the optical input in terms of tungsten filament based luminous flux remained more stable. With Xenon discharge lamps and now LED the performance of a headlamp may vary strongly and thus the optical performance. Various rating systems have been developed to assess the quality of lamps and light distribution, some based on laboratory based data, some based on static or dynamic street test drives with online measurements and assessments. Basic interest is to understand the performance of the light for a real driver. This article will discuss the influence parameters on achieving a repeatable and precise rating as well as the outer influence that creates glare and varying seeing distance. Mostly mechanical headlamp and car conditioning will influence the result as well as human factors like aiming precision and aiming tolerances.
Technical Paper

Future of Automotive Embedded Hardware Trust Anchors (AEHTA)

2022-03-29
2022-01-0122
The current automotive electronic and electrical (EE) architecture has reached a scalability limit and in order to adapt to the new and upcoming requirements, novel automotive EE architectures are currently being investigated to support: a) an Ethernet backbone, b) consolidation of hardware capabilities leading to a centralized architecture from an existing distributed architecture, c) optimization of wiring to reduce cost, and d) adaptation of service-oriented software architectures. These requirements lead to the development of Zonal EE architectures as a possible solution that require appropriate adaptation of used security mechanisms and the corresponding utilized hardware trust anchors. 1 The current architecture approaches (ECU internal and in-vehicle networking) are being pushed to their limits, simultaneously, the current embedded security solutions also seem to reveal their limitations due to an increase in connectivity.
Technical Paper

Future Automotive Embedded Systems Enabled by Efficient Model-Based Software Development

2021-04-06
2021-01-0129
This paper explains why software for efficient model-based development is needed to improve the efficiency of automakers and suppliers when implementing solutions with next generation automotive embedded systems. The resulting synergies are an important contribution for the automotive industry to develop safer, smarter, and more eco-friendly cars. To achieve this, it requires implementations of algorithms for machine learning, deep learning and model predictive control within embedded environments. The algorithms’ performance requirements often exceed the capabilities of traditional embedded systems with a homogeneous multicore architecture and, therefore, additional computing resources are introduced. The resulting embedded systems with heterogeneous computing architectures enable a next level of safe and secure real-time performance for innovative use cases in automotive applications such as domain controllers, e-mobility, and advanced driver assistance systems (ADAS).
Technical Paper

Experimental and Numerical Investigations on Isolated, Treaded and Rotating Car Wheels

2020-04-14
2020-01-0686
Wheels on passenger vehicles cause about 25% of the aerodynamic drag. The interference of rims and tires in combination with the rotation result in strongly turbulent wake regions with complex flow phenomena. These wake structures interact with the flow around the vehicle. To understand the wake structures of wheels and their impact on the aerodynamic drag of the vehicle, the complexity was reduced by investigating a standalone tire in the wind tunnel. The wake region behind the wheel is investigated via Particle Image Velocimetry (PIV). The average flow field behind the investigated wheels is captured with this method and offers insight into the flow field. The investigation of the wake region allows for the connection of changes in the flow field to the change of tires and rims. Due to increased calculation performance, sophisticated computational fluid dynamics (CFD) simulations can capture detailed geometries like the tire tread and the movement of the rim.
Technical Paper

Efficient Virtualization for Functional Integration on Modern Microcontrollers in Safety-Relevant Domains

2014-04-01
2014-01-0206
The infrastructure in modern cars is a heterogeneous and historically grown network of different field buses coupling different electronic control units (ECUs) from different sources. In the past years, the amount of ECUs in the network has rapidly grown due to the mushrooming of new functions which historically were mostly implemented on a one-ECU-per-function basis resulting in up to a hundred ECUs in fully equipped luxury cars. Additionally, new functions like parking assist systems or advanced chassis control functions are getting increasingly complex and require more computing power. These two facts add up to a complex challenge in development. The current trend to host several functions in single ECUs as integration platforms is one attempt to address this challenge. This trend is supported by the increased computing power of current and upcoming multi-core microcontrollers.
Technical Paper

Analysis of Detection Distances and Road Safety of Modern Headlamps Under Variation of Aim and Performance

2022-03-29
2022-01-0796
In addition to the low and high beam functions, some modern headlamps also have the option of switching on only section of the high beam. The so-called adaptive high beam is intended to increase the detection distance of objects and through that drastically improve the road safety. At the same time, this function does not increase the glare for oncoming or preceding traffic. This is enabled through switching the different segments of the high beam on or off, depending on which and where other road users are recognized by the front camera. This massively increases the use of the high beam, thus increasing road safety. In this study, the increase in the detection distance of objects on a straight line is statically investigated with a test person study. Furthermore, the glare of each of these three light functions is observed.
Journal Article

Adapted Development Process for Security in Networked Automotive Systems

2014-04-01
2014-01-0334
Future automotive systems will be connected with other vehicles and information systems for improved road safety, mobility and comfort. This new connectivity establishes data and command channels between the internal automotive system and arbitrary external entities. One significant issue of this paradigm shift is that formerly closed automotive systems now become open systems that can be maliciously influenced through their communication interfaces. This introduces a new class of security challenges for automotive design. It also indirectly impacts the safety mechanisms that rely on a closed-world assumption for the vehicle. We present a new security analysis approach that helps to identify and prioritize security issues in automotive architectures. The methodology incorporates a new threat classification for data flows in connected vehicle systems.
X