Refine Your Search

Topic

Author

Search Results

Technical Paper

Wind Tunnel Pulsations and their Active Suppression

2000-03-06
2000-01-0869
Low-frequency pressure fluctuations which occur at certain flow speeds are an undesired feature in many open jet wind tunnels. This so called ‘wind tunnel pumping’ affects the aerodynamic quality of the flow and thus the quality of the measured data. In this paper a novel approach is presented to control the pulsation phenomenon by active damping of the acoustic resonant modes of the wind tunnel circuit. The acoustic mechanism of the resonance effect was investigated using a 1/20 scale pilot wind tunnel with a complete and detailed representation of test section, ducting, turning vanes and fan. The newly devised Active Resonance Control (ARC) System essentially consists of a microphone which picks up the pressure fluctuations in the plenum, a loudspeaker which is mounted in the tunnel wall and a time delay to adjust the phase relation between the microphone signal and the loudspeaker output.
Technical Paper

Using the XiL Approach for Brake Emission Investigations for Electrified Vehicles

2023-11-05
2023-01-1891
The following paper aims to bring the topics of connected testing and emission measurements together. It is an introduction of connected bench testing with the aim to characterize brake particle emissions with a special focus on the impact of regenerative braking by simulating the real behavior of a premium BEV SUV. Such an approach combines the advantages of a brake dynamometer including an emission testing setup and a HiL setup to allow a much more precise testing of brake particle emissions under the impact of regen braking compared to the current recommendations of the Global Technical Regulation (GTR) on brake particle emissions. It is shown for the very first time, how interactions between the vehicle motion system work. The study includes one physical front brake corner as well as one physical rear brake corner. The regen functionalities are simulated by a real ESC-ECU which is the core of the HiL test setup.
Technical Paper

Transmission of sound under the influence of various environmental conditions

2024-06-12
2024-01-2933
Electrified vehicles are particularly quiet, especially at low speeds due to the absence of combustion noises. This is why there are laws worldwide for artificial driving sounds to warn pedestrians. These sounds are generated using a so-called Acoustic Vehicle Alerting System (AVAS) which must maintain certain minimum sound pressure levels in specific frequency ranges at low speeds. The creation of the sound currently involves an iterative and sometimes time-consuming process that combines composing the sound on a computer with measuring the levels with a car on an outside noise test track. This continues until both the legal requirements and the subjective demands of vehicle manufacturers are met. To optimize this process and reduce the measurement effort on the outside noise test track, the goal is to replace the measurement with a simulation for a significant portion of the development.
Video

The New Audi A6/A7 Family - Aerodynamic Development of Different Body Types on One Platform

2011-11-17
The presentation describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The presentation illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Journal Article

The New Audi A6/A7 Family - Aerodynamic Development of Different Body Types on One Platform

2011-04-12
2011-01-0175
The paper describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The paper illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Technical Paper

The Ground Simulation Upgrade of the Large Wind Tunnel at the Technische Universität München

2012-04-16
2012-01-0299
The large wind tunnel at the Technische Universität München was upgraded by integrating a modular single-belt system, which enables the simulation of moving ground conditions for ground vehicle testing. Central part of this system is its large belt that moves at a maximum speed of 50 m/s. This belt not only simulates the relative motion between the model vehicle under investigation and the floor, but also drives the model's wheels. Due to its size, the wind tunnel facility is suited for testing 40%-scaled models of typical passenger cars, which are held in place by a newly designed model support system consisting of five struts: One strut to support the body of the model and four struts to hold the model's wheels on top of the moving belt. Another crucial step in upgrading the wind tunnel was to install a boundary layer scoop system to reduce the thickness of the boundary layer approaching the moving belt.
Journal Article

The Aerodynamic Development of the New Audi Q5

2017-03-28
2017-01-1522
The aerodynamic development of the new Audi Q5 (released in 2017) is described. In the course of the optimization process a number of different tools has been applied depending on the chronological progress in the project. During the early design phase, wind tunnel experiments at 1:4 scale were performed accompanied by transient DES and stationary adjoint simulations. At this stage the model contained a detailed underbody but no detailed engine bay for underhood flow. Later, a full scale Q5 model was built up for the aerodynamic optimization in the 1:1 wind tunnel at Audi AG. The model featured a detailed underbody and engine bay including original parts for radiators, engine, axles and brakes from similar vehicles. Also the 1:1 experiments were accompanied by transient DES and stationary adjoint simulations in order to predict optimization potential and to better understand the governing flow.
Technical Paper

Studies on Enhanced CVS Technology to Achieve SULEV Certification

2002-03-04
2002-01-0048
For the measurement of exhaust emissions, Constant Volume Sampling (CVS) technology is recommended by legislation and has proven its practical capability in the past. However, the introduction of new low emission standards has raised questions regarding the accuracy and variability of the CVS system when measuring very low emission levels. This paper will show that CVS has the potential to achieve sufficient precision for certification of SULEV concepts. Thus, there is no need for the introduction of new test methods involving high cost. An analysis of the CVS basic equations indicates the importance of the Dilution Factor (DF) for calculating true mass emissions. A test series will demonstrate that, by adjusting the dilution and using state of the art analyzers, the consistency of exhaust results is comparable with those of LEV concepts, measured with conventional CVS systems and former standard analyzers.
Technical Paper

Rotating Wheels - Their Impact on Wind Tunnel Test Techniques and on Vehicle Drag Results

1997-02-24
970133
The question of the proper simulation of wheel rotation has not so far been a major concern. Within the scope of an examination of the influence of wheels and tyres on aerodynamic drag it will be shown that their contribution to the overall drag value - whether they are rotating or not - is of about the same magnitude as the proportion of the rough underbody. Therefore the question of the importance of the simulation of wheel rotation is posed. This paper discusses how a measurement with a better simulation can look like and what the major changes in the flow field are. In particular a new physical quantity, which has to be determined, the so-called “fan moment” is introduced. . The problems that arise in the determination of the fan moment of the wheels and hence in the required isolation of the rolling resistance, are described in detail. This is done for a test set up with full width moving belt and measurement via internal balance and sting support.
Technical Paper

Ridemeter – Calculated Ride Comfort

2007-05-15
2007-01-2388
The ridemeter is a development tool that provides a predictive value for subjectively perceived ride quality on the basis of objective measured values. After years of preliminary investigations it was possible to make the link between the subjective driving experience and objective measured data. Intensive validation of the tool known as the ridemeter enables it to obtain meaningful results, which meet with a high degree of acceptance from the development engineer. The ridemeter is capable of providing calculated assessments for different vehicle concepts on different roads. The ridemeter is used on general road tests, on test runs on the AUDI proving ground, on our test rigs and in simulation. Areas of application include benchmark investigations, optimisation steps for suspension components and systems, and the setting out of limit values and tolerance curves in specifications for future vehicles.
Technical Paper

Reliability of Engineering Methods in Heavy-Vehicle Aerodynamics

2017-08-25
2017-01-7001
The improved performance of heavy-duty vehicles as transport carriers is essential for economic reasons and to fulfil new emission standards in Europe. A key parameter is the aerodynamic vehicle drag. An enormous potential still exists for fuel saving and reducing exhaust emission by aerodynamic optimisation. Engineering methods are required for developments in vehicle aerodynamics. To assess the reliability of the most common experimental testing and numerical simulation methods in the industrial design process is the objective of this article. Road tests have been performed to provide realistic results, which are compared to the results obtained by scale-model wind tunnel experiments and time-averaged computational fluid dynamics (CFD). These engineering methods are evaluated regarding their deployment in the industrial development process. The investigations focus on the separated flow region behind the vehicle rear end.
Technical Paper

Properties and Limitation of an Oxide Coated Aluminum Brake Rotor

2018-10-05
2018-01-1877
The electrification of the powertrain and the thereto related recuperation of the electric engine saves the energy in the battery and thus reduces the thermally dissipated brake energy, which leads to lower brake rotor temperatures compared to combustion engine vehicles (ICEVs). These new conditions enable to reconsider brake disc concepts. Including lightweight design in heavy battery electric vehicles (BEVs) and the increasingly reliant corrosion resistance of brake rotors, Aluminum is a promising approach for new brake disc concepts. In the past, Aluminum brake disc concepts have already been deployed. For instance Aluminum Metal-Matrix Composite (Al-MMC) concepts in the Lotus Elise S1 and on the rear axle of the Volvo V40 [1]. The presented concept is a different approach and separates the friction system from the bulk Aluminum brake disc, achieved by coating of the friction rings.
Technical Paper

Potentials and Challenges of a Brake Particle Emission Collecting System

2020-10-05
2020-01-1635
Brake particle emissions as a part of non-exhaust emissions are becoming more and more relevant, various international research activities can be stated. Also from the legislation side, first hints are given in regards of possible regulations. One possible approach for the reduction of brake particle emissions deals with the collection of those particles close to the foundation brake. The presented paper will follow such an approach and give some insights. In a first step, the technical layout is described for bench and vehicle testing. While for bench testing a PMP-like style of the setup could be chosen, the vehicle test setup is oriented on conventional wheel dust measurements. Hence, presented results of laboratory testing are dealing with PN and PM measurements. Also the impact on particle size distribution is discussed. It can be stated, that the particle collecting system is able to improve PN and PM emissions. Additionally, ultra-fine particles are almost eliminated.
Journal Article

New Motion Cueing Algorithm for Improved Evaluation of Vehicle Dynamics on a Driving Simulator

2017-03-28
2017-01-1566
In recent years, driving simulators have become a valuable tool in the automotive design and testing process. Yet, in the field of vehicle dynamics, most decisions are still based on test drives in real cars. One reason for this situation can be found in the fact that many driving simulators do not allow the driver to evaluate the handling qualities of a simulated vehicle. In a driving simulator, the motion cueing algorithm tries to represent the vehicle motion within the constrained motion envelope of the motion platform. By nature, this process leads to so called false cues where the motion of the platform is not in phase or moving in a different direction with respect to the vehicle motion. In a driving simulator with classical filter-based motion cueing, false cues make it considerably more difficult for the driver to rate vehicle dynamics.
Technical Paper

Modeling of Compaction Processes of Friction Material Mixes

2002-10-06
2002-01-2594
In the production of brake disc pads, powder mixes containing, metal chips, filling agents, and abrasive materials, as well as phenolic resins are processed and molded to a back plate by way of pressure and temperature. These molded disc pads reach their final strength through additional thermal treatment such that the phenolic resins approach “full cure”. This production process leads to anisotropic, viscoelastic, and to a certain extent heterogeneous materials which are - like the brake system- increasingly subject to even greater demands. E.g. apart from tribological characteristics, more and more focus is placed on structure-mechanical properties to improve the braking comfort.
Technical Paper

Investigations on the Deposition Behaviour of Brake Wear Particles on the Wheel Surface

2021-10-11
2021-01-1301
The deposition behavior of brake wear particles on the surface of a wheel and the mechanisms on it have not been fully understood. In addition, the proportion of brake wear particles deposited on the wheel surface compared to the total emitted particles is almost unknown. This information is necessary to evaluate the number- and mass-related emission factors measured on the inertia dynamometer and to compare them with on-road and vehicle-related emission behaviour. The aim of this study is to clarify the deposition behavior of brake particles on the wheel surface. First, the real deposition behaviour is determined in on-road tests. For particle sampling, collection pads are adapted at different positions of a front and rear axle wheel. In addition to a Real Driving Emissions (RDE)-compliant test cycle, tests are performed in urban, rural and motorway sections to evaluate speed-dependent influences.
Technical Paper

Investigations on Visibility of Digital Road Projections

2022-03-29
2022-01-0799
This paper covers research findings on digital projections on the road. Data is provided for the root cause analysis of non-existing distraction proven by several studies. The study describes if and in which geometrical space road projections are visible to other road traffic participants. Such participants can be e.g. oncoming, passing drivers or pedestrians standing aside the road. The paper data shows where projections are recognizable and assignable to the original intention of the projection. A grid was created to identify the areas where digital projections could be understood and where the digital projections were just illegible. A dominant factor is the grazing incidence. The photons are distributed over a larger area and only the driver’s view makes a virtual compression of the illuminated area in order to make the signals legible. The results show that distraction for other road participants is unlikely for any position outside very limited areas.
Technical Paper

Investigations on Headlamp and Car Body Tolerances in Real Life

2020-04-14
2020-01-0635
Good lighting is crucial for safe driving at night. Unfortunately, many parameters are contributing to the final result of the individual tolerances of car body, dynamics and headlamp: the resulting aim. The paper will analyze individual tolerance contributors from car body parameters like load, tire pressure, suspension as well as temperature parameters of chassis and plastic parts. The investigation shows that the headlight aim can fluctuate in a worst case scenario more than ±0.3°.
Technical Paper

Investigations of the Measurement Layout for Brake Particle Emissions

2018-10-05
2018-01-1885
Non-exhaust emissions in general and brake particle emissions in particular have become very relevant during the last years. Even if many investigations and efforts are under progress, no common test standards exist so far. Many mechanisms and possible impacts are not fully understood either. Hence, the authors continued their investigations by using an already refined and proved test setup, which is the base for further characterizations and enhancements. The presented studies include the characterization of three different friction couples (using the same brake system) for two different test cycles (namely a modified AK Master and a WLTP) in terms of particle number concentration. Additionally, the major differences of the modified AK Master and the WLTP are investigated and analyzed. Finally, results of particle mass characterizations introduced. A brief summary and some conclusions are presented in the final chapter.
Technical Paper

Investigation of Horizontal Light Function Positions on the Distance Estimation by Test Persons to Ensure Road Safety

2023-04-11
2023-01-0918
When designing new vehicles, the legal requirements of the countries in which the vehicles are homologated must be observed and implemented. The manufacturers try to consider the legal framework of the UN-ECE (United Nations Economic Commission for Europe), CCC (China Compulsory Certification) and FMVSS (Federal Motor Vehicle Safety Standard) 108 in the same vehicle to keep the variance low. For the appearance of the vehicle, the position of the light modules in the front of the vehicle is important. In addition to the surface requirements of lighting functions, the positions of the low beam (LB), high beam (HB) and the position of daytime running lights (DRL) are also regulated. When it comes to these mounting positions, the legislation between the US and the EU differs quite significantly.
X