Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vapor/Liquid Visualization with Laser-Induced Exciplex Fluorescence in an SI-Engine for Different Fuel Injection Timings

1996-05-01
961122
Laser-induced exciplex fluorescence has been applied to the mixture formation process in the combustion chamber of an optically-accessible four-cylinder in-line spark-ignition engine in order to distinguish between liquid and vapor fuel distribution during the intake and compression stroke for different injection timings. The naphthalene/N,N,N′N′-tetramethyl p-phenylene diamine (TMPD) exciplex system excited at 308nm with a broadband XeCl excimer laser is used to obtain spectrally-separated, single-shot fluorescence images of the liquid or vapor phase of the fuel. For different timings of the fuel injector this technique is applied to obtain crank-angle-resolved images of the resulting mixture in the combustion chamber. The fluorescence light is detected with an intensified slow-scan CCD-camera equipped with appropriate filters.
Technical Paper

Unregulated Exhaust Gas Components of Modern Diesel Passenger Cars

1999-03-01
1999-01-0514
In this paper the emissions of regulated and unregulated exhaust gas components of a fleet of diesel passenger cars measured at Volkswagen in the eighties are compared with the results of a new investigation on modern direct-injection diesel vehicles. The potential of improved diesel fuels to reduce emissions is also examined. The emissions of regulated exhaust gas components as well as fuel consumption have been reduced significantly in the last years as a result of the systematic further development of conventional swirl chamber engines and exhaust gas after-treatment as well as the introduction of SDI/TDI engines. As was to be expected, this has also had a positive effect on the emissions of unregulated exhaust gas components. It has been possible, for example, to reduce the polycyclic aromatic hydrocarbons adsorbed on diesel particulates by more than 95%.
Technical Paper

Time-Triggered Architecture Based on FlexRay: Roadmap from High-Speed Data Networking to Safety-Relevant Automotive Applications

2006-10-16
2006-21-0042
Future applications in the automotive domain such as distributed control functions need a highly dependable communication system. The current FlexRay standard already provides high transmission speeds and addresses deterministic data communication. This paper shows how to enhance the safety properties for handling a new set of applications and speeding up the communication even more. The concept of Layered FlexRay is based on the FlexRay protocol and addresses the requirements of safety-relevant applications in a distributed communication network. An implementation of this approach is depicted with a Safety Core hardware chip. It is designed to handle the communication between the FlexRay system beneath and the application on the host CPU above, providing highly efficient data management and execution of safety functions which otherwise would have to be executed in software on the host CPU.
Technical Paper

The Magnesium Hatchback of the 3-Liter Car: Processing and Corrosion Protection

2000-03-06
2000-01-1123
The hatchback of Volkswagen's 3 liter car (3 l fuel consumption per 100 km) consists of an inner component of die casting magnesium (AM50) covered with an aluminum panel from the outside. This hybrid design requires a new manufacturing process: The pre-coated magnesium part will be bonded and folded with the bare aluminum part. Corrosion protection is provided by an organic coating system which both protects against general corrosion and galvanic corrosion. The corrosion of the Al / Mg sandwich has been examined with hybrid samples which are similar to the hatchback. Several powder coatings (epoxy resin, polyester resin, hybrid resin), wet paints and cathodic electro-coating paints of different thicknesses and compositions have been applied to the magnesium part. They show that only powder coating provides adequate protection. Galvanic corrosion at the points of attachment of the hatchback might be possible (for example the bolted joint of the hinge).
Technical Paper

Springback Elimination in Structural Components by Means of Electromagnetic Forming

2009-04-20
2009-01-0803
Looking for car weight reduction related to the use of High Strength Steels (HSS) for manufacturing body-in-white components, an innovative application of the high velocity forming techniques has been developed: the Electro Magnetic (EM) calibration and elimination of the spring-back effect (sidewall curl) of High Strength Steel U-channels. Within this paper the initial tests on L and U-shaped parts will be presented. Being the mechanical stiffness the main parameter for improving the coil endurance, the prediction of the coil strains under EM forces is a basic issue, which has been addressed within this study.
Technical Paper

Space Frame - Quo Vadis?

1998-09-29
982401
Lightweighting of cars will remain one important goal for car producers. One milestone for lightweight technologies was the Audi Space Frame ASF‚. New generations of ASF cars will follow. Only the experience from the A 8 shows, which innovative technologies for these new generations will bring us one step forward. It's the combination of alloy modifications, innovative forming and joining technologies that leads into the future.
Technical Paper

Software Development Process and Software-Components for X-by-Wire Systems

2003-03-03
2003-01-1288
The term X-by-Wire is commonly used in the automotive industry to describe the notion of replacing current mechanical or hydraulic chassis and powertrain systems with pure electro-mechanical systems. The paper describes the current trends and the architecture of future chassis electronics systems. The first part of the paper covers the systems architecture of x-by-wire electronics systems. We describe the network and the software architecture in more detail. The paper also explains some of the software components, in particular the operating system and the communication layer. The second part of the paper gives a description of the current state of the development process for software intended for safety-relevant systems. A possible tool chain for this development process, current possibilities as well as limitations and challenges are described.
Technical Paper

Software Architecture Methods and Mechanisms for Timing Error and Failure Detection According to ISO 26262: Deadline vs. Execution Time Monitoring

2013-04-08
2013-01-0174
More electronic vehicle functions lead to an exponentially growing degree of software integration in automotive ECUs. We are seeing an increasing number of ECUs with mixed criticality software. ISO26262 describes different safety requirements, including freedom from interference and absence from error propagation for the software. These requirements mandate particular attention for mixed-criticality ECUs. In this paper we investigate the ability to guarantee that these safety requirements will be fulfilled by using established (deadline monitoring) and new error detection mechanisms (execution time monitoring). We also show how these methods can be used to build up safe and efficient schedules for today's and future automotive embedded real time systems with mixed criticality software.
Technical Paper

SMART Catalyst Development Approach Applied to Automotive Diesel Application

1996-10-01
962048
Strategic Materials at Reaction Temperatures (SMART) is an approach used to design washcoat systems for passive 4-way emission control catalysts. Light duty diesel vehicles need to meet the European Motor Vehicle Emissions Group (MVEG) cycle or U. S. Federal test procedure (FTP 75). Emissions that are monitored include hydrocarbon (HC), nitrogen oxides (NOx), carbon monoxide (CO) and total particulate matter (TPM). Low engine-exhaust temperatures (< 200°C during city driving) and high temperatures (> 500-800°C under full load and wide-open throttle) make emission control a formidable task for the catalyst designer Gas phase HC, CO and NOx reactions must be balanced with the removal of the soluble organic fraction for the vehicle to be in compliance with regulations. The SMART approach uses model gases under typical operating conditions in the laboratory to better understand the function of individual washcoat components.
Technical Paper

Research Results on Processes and Catalyst Materials for Lean NOx Conversion

1996-10-01
962041
In a joint research project between industrial companies and a number of research institutes, nitrogen oxide conversion in oxygen containing exhaust gas has been investigated according to the following procedure Basic investigations of elementary steps of the chemical reaction Production and prescreening of different catalytic material on laboratory scale Application oriented screening of industrial catalyst material Catalyst testing on a lean bum gasoline engine, passenger car diesel engines (swirl chamber and DI) and on a DI truck engine Although a number of solid body structures show nitrogen oxide reduction by hydrocarbons, only noble metal containing catalysts and transition metal exchanged zeolites gave catalytic efficiencies of industrial relevance. A maximum of 25 % NOx reduction was found in the European driving cycle for passenger cars, about 40 % for truck engines in the respective European test.
Technical Paper

Quantitative In-Cylinder NO LIF Measurements with a KrF Excimer Laser Applied to a Mass-Production SI Engine Fueled with Isooctane and Regular Gasoline

1997-02-24
970824
Quantitative 1-D spatially-resolved NO LIF measurements in the combustion chamber of a mass-production SI engine with port-fuel injection using a tunable KrF excimer laser are presented. One of the main advantages of this approach is that KrF laser radiation at 248 nm is only slightly absorbed by the in-cylinder gases during engine combustion and therefore it allows measurements at all crank angles. Multispecies detection turned out to be crucial for this approach since it is possible to calculate the in-cylinder temperature from the detected Rayleigh scattering and the simultaneously acquired pressure traces. Additionally, it allows the monitoring of interfering emissions and spectroscopic effects like fluorescence trapping which turned out to take place. Excitation with 248 nm yields LIF emissions at shorter wavelengths than the laser wavelength (at 237 and 226 nm).
Technical Paper

Properties and Limitation of an Oxide Coated Aluminum Brake Rotor

2018-10-05
2018-01-1877
The electrification of the powertrain and the thereto related recuperation of the electric engine saves the energy in the battery and thus reduces the thermally dissipated brake energy, which leads to lower brake rotor temperatures compared to combustion engine vehicles (ICEVs). These new conditions enable to reconsider brake disc concepts. Including lightweight design in heavy battery electric vehicles (BEVs) and the increasingly reliant corrosion resistance of brake rotors, Aluminum is a promising approach for new brake disc concepts. In the past, Aluminum brake disc concepts have already been deployed. For instance Aluminum Metal-Matrix Composite (Al-MMC) concepts in the Lotus Elise S1 and on the rear axle of the Volvo V40 [1]. The presented concept is a different approach and separates the friction system from the bulk Aluminum brake disc, achieved by coating of the friction rings.
Technical Paper

Optical Coordinate Measuring Techniques for the Determination and Visualization of 3D Displacements in Crash Investigations

2003-03-03
2003-01-0891
The measurement of 3D coordinates using optical techniques is well known for more than 50 years. Today, modern photogrammetric systems are based on handheld digital cameras and are used to identify the location of any circular marker or feature on the object's surface. The ease of use and the accurate and automated derivation of 3D coordinates from 2D digital images helped to establish a powerful tool for position control, assembly checks and reverse engineering. A new application is the analysis of real vehicle crashes. The location of hundreds of markers on the damaged vehicle can easily be determined in vehicle body position. These coordinates are being compared to the undeformed geometry and provide herby 3D information on any displacement. Using reverse engineering techniques, surfaces are created from the 3D points and thus a 3D model of the crashed vehicle is available for an easy visualization of the deformation.
Technical Paper

On Timing Requirements and a Critical Gap between Function Development and ECU Integration

2015-04-14
2015-01-0180
With the increasing complexity of electronic vehicle systems, one particular “gap” between function development and ECU integration becomes more and more apparent, and critical; albeit not new. The core of the problem is: as more functions are integrated and share the same E/E resources, they increasingly mutually influence and disturb each other in terms of memory, peripherals, and also timing and performance. This has two consequences: The amount of timing-related errors increases (because of the disturbance) and it becomes more difficult to find root causes of timing errors (because of the mutual influences). This calls for more systematic methods to deal with timing requirements in general and their transformation from function timing requirements to software architecture timing requirements in particular.
Technical Paper

Numerical Analysis of Gas Exchange and Combustion Process in a Small Two-Stroke Gasoline Engine

2001-09-24
2001-01-3602
This paper analyses the scavenge process of a conventional two-stroke engine in order to find ways to significantly reduce the scavenge losses by applying a combination of 1D and 3D simulation procedures. A special evaluation method was developed which allows a clear distinction between the main hydrocarbon loss mechanisms. Furthermore, the paper presents an approach to simulate the highly turbulent combustion at a speed of 9000 rpm. The results of the numerical investigations are compared with experimental results. The engine chosen for this purpose was a 64 cm3 four-port production two-stroke engine. The CFD calculations were performed using the finite volume CFD code STAR-CD. The mesh generation process was automated using pro*am. Combustion was modelled with the one-equation Weller flamelet model. The results of the present study show that the combination of 1D and 3D simulation procedures is a powerful tool for further investigations (e.g. stratified charge, GDI).
Technical Paper

Non-intrusive Temperature Measurements during the Compression Phase of a DI Diesel Engine

1995-10-01
952461
Non-intrusive temperature measurements based on single-line laser-induced fluorescence of molecular oxygen in the transparent IDEA Diesel engine were investigated. Oxygen molecules were excited to fluorescence with a narrowband, tunable ArF excimer laser at 193 nm. The resulting fluorescence signals were recorded with an image-intensified CCD camera. The temperature increase during the compression phase of the four-cylinder direct injection Diesel engine could be evaluated from the LIF signals. In the crank angle range of the measurements, good agreement between measured and calculated temperatures (polytropic compression) was observed.
Technical Paper

NOx Formation in Diesel Engines for Various Fuels and Intake Gases

1995-02-01
950213
The NO formation is essentially determined by the flame temperature. In an engine the latter depends on the composition of the fuel and the intake gas. In this study the efficiency of various NO reducing measures is analysed by means of a comparison of measurements and computations for the Most frequent operation point of a 1.9 1 DI Diesel engine. The O2 concentration, which is shown to be the dominant source of influence on the flame temperature and NO formation, is varied using synthetic gas mixtures or by EGR. The molar heat capacity of CO2 and H2O in the recirculated exhaust gas, the intake temperature and the H/C ratio in the fuel are less important for the formation of NO. Measures which reduce the NO formation increase the ignition delay and thereby the fraction of the premixed combustion. The impact of EGR on the combustion process is illustrated by high speed filming.
Technical Paper

NO Laser-Induced Fluorescence Imaging in the Combustion Chamber of a Spray-Guided Direct-Injection Gasoline Engine

2004-06-08
2004-01-1918
In direct-injection gasoline (GDI) engines with charge stratification, minimizing engine-out nitrogen oxide (NOx) emission is crucial since exhaust-gas aftertreatment tolerates only limited amounts of NOx. Reduced NOx production directly lowers the frequency of energy-inefficient catalyst regeneration cycles. In this paper we investigate NO formation in a realistic GDI engine. Quantitative in-cylinder measurements of NO concentrations are carried out via laser-induced fluorescence imaging with excitation of NO (A-X(0,2) band at 248 nm), and subsequent fluorescence detection at 220-240 nm. Engine modifications were kept to a minimum in order to provide results that are representative of practical operating conditions. Optical access via a sapphire ring enabled identical engine geometry as a production line engine. The engine is operated with commercial gasoline (“Super-Plus”, RON 98).
Technical Paper

Multicore vs Safety

2010-04-12
2010-01-0207
It is the beginning of a new age: multicore technology from the PC desktop market is now also hitting the automotive domain after several years of maturation. New microcontrollers with two or more main processing cores have been announced to provide the next step change in available computing power while keeping costs and power consumption at a reasonable level. These new multicore devices should not be confused with the specialized safety microcontrollers using two redundant cores to detect possible hardware failures which are already available. Nor should they be confused with the heterogeneous multicore solutions employing an additional support core to offload a single main processing core from real-time tasks (e.g. handling peripherals).
Technical Paper

Model-Predictive Energy Management for the Integration of Plug-In-Hybrid Electric Vehicles into Building Energy Systems

2013-04-08
2013-01-1443
In current research projects such as "Vehicle to Grid" (V2G), "Vehicle to Building" (V2B) or "Vehicle to Home" (V2H), plug-in vehicles are integrated into stationary energy systems. V2B or V2H therefore stands for intelligent networking between vehicles and buildings. However, in these projects the objective is mostly from a pure electric point of view, to smooth the load profile on a household level by optimized charging and discharging of electric vehicles. In the present paper a small energy system of this kind, consisting of a building and a vehicle, is investigated from a holistic point of view. Thermal as well as electrical system components are taken into account and there is a focus on reduction of overall energy consumption and CO₂ emissions. A predictive energy management is presented that coordinates the integration of a plug-in hybrid electric vehicle into the energy systems of a building. System operation is optimized in terms of energy consumption and CO₂ emissions.
X