Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
Technical Paper

Wake Structures of Rectangular Bodies with Radiused Edges Near a Plane Surface

1999-03-01
1999-01-0648
Almost all published results of wake measurements for ground vehicles or similar shapes have included very limited information on streamwise development of wake structures. This is typically a result of the fact that the wake measurements have been conducted as parts of particular vehicle development efforts. So the focus has been on the incremental changes in the wakes associated with alternative geometries or buildup of various parts. The objectives are typically reached by limiting the surveys to a single streamwise plane. The present study, by contrast, is a study of wake development for a series of relatively simple rectangular shapes with radiused edges with a systematic variation in the ratio of height to width or “Aspect Ratio”.
Technical Paper

Vehicle Response Comparison to Tire Tread Separations Induced by Circumferentially Cut and Distressed Tires

2007-04-16
2007-01-0733
In this study, tests were performed with modified tires at the right rear location on a solid rear axle sport utility vehicle to compare the vehicle inputs from both: (1) tire tread belt detachments staged by circumferentially cut tires, and (2) a tire tread detachment staged by distressing a tire in a laboratory environment. The forces and moments that transfer through the road wheel were measured at the right and left rear wheel locations using wheel force transducers; displacements were measured between the rear axle and the frame at the shock absorber mounting locations, ride height displacements were measured at the four corners of the vehicle, and accelerations were measured on the rear axle. Onboard vehicle accelerations and velocities were measured as well. The data shows that the tire tread belt detachments prepared by circumferentially cut tires and distressed tires have similar inputs to the vehicle.
Technical Paper

Vehicle Cross Wind Air Flow Analysis

1997-04-08
971517
CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

Validation of Non-linear Load-Controlled CAE Analyses of Oil-Canning Tests of Hood and Door Assemblies

2003-03-03
2003-01-0603
Two finite element methodologies for simulating oil-canning tests on closure assemblies are presented. Reflecting the experimental conditions, the simulation methodologies assume load-controlled situations. One methodology uses an implicit finite-element code, namely ABAQUS®, and the other uses an explicit code, LS-DYNA®. It is shown that load-displacement behavior predicted by both the implicit and explicit codes agree well with experimental observations of oil-canning in a hood assembly. The small residual dent depth predictions are in line with experimental observations. The method using the implicit code, however, yields lower residual dent depth than that using the explicit code. Because the absolute values of the residual dent depths are small in the cases examined, more work is needed, using examples involving larger residual dent depth, to clearly distinguish between the two procedures.
Technical Paper

Using a Geometric Toolkit to Link Finite Element Calculations in Sheet Metal Forming Analysis

1994-03-01
940748
Sheet metal forming of automobile body panel consists of two processes performed in series: binder forming and punch forming. Due to differences in deformation characteristics of the two forming processes, their analysis methods are different. The binder wrap surface shape and formed part shape are calculated using different mathematical models and different finite element codes, e.g., WRAPFORM and PANELFORM, respectively. The output of the binder forming analysis may not be directly applicable to the subsequent punch forming analysis. Interpolation, or approximation, of the calculated binder wrap surface geometry is needed. This surface representation requirement is carried out using computer aided geometric design tools. This paper discusses the use of such a tool, SURFPLAN, to link WRAPFORM and PANELFORM calculations.
Technical Paper

Use of Body Mount Stiffness and Damping In CAE Crash Modeling

2000-03-06
2000-01-0120
This paper reports a study of the dynamic characteristics of body mounts in body on frame vehicles and their effects on structural and occupant CAE results. The body mount stiffness and damping are computed from spring-damper models and component test results. The model parameters are converted to those used in the full vehicle structural model to simulate the vehicle crash performance. An effective body mount in a CAE crash model requires a set of coordinated damping and stiffness to transfer the frame pulse to the body. The ability of the pulse transfer, defined as transient transmissibility[1]1, is crucial in the early part of the crash pulse prediction using a structural model such as Radioss[2]. Traditionally, CAE users input into the model the force-deflection data of the body mount obtained from the component and/or full vehicle tests. In this practice, the body mount in the CAE model is essentially represented by a spring with the prescribed force-deflection data.
Technical Paper

Transient Dynamic Analysis of Suspension System for Component Fatigue Life Estimation

2007-04-16
2007-01-0638
For suspension systems, fatigue and strength simulations are accomplished mostly at the component level. However, the selection of loading conditions and replication of boundary conditions at the component level may be difficult. A system level simulation eliminates most of the discrepancy between component level and vehicle level environment yielding realistic results. Further advantage of system level simulation is that the boundary conditions are limited to suspension mounting points at body or frame and the loading is limited to wheel-end or tire patch loading. This provides for a robust set of boundary constraints that are known and repeatable, and loads that are simpler and of relatively higher accuracy. Here, the nonlinear transient dynamic behavior of a suspension system along with its frame and mounting was simulated using a multibody finite element analysis (FEA).
Technical Paper

Three-Dimensional Navier-Stokes Analysis of Front End Air Flow for a Simplified Engine Compartment

1992-06-01
921091
A computer code for predicting cooling air flow through the radiator and the condenser has been developed. The Reynolds-averaged Navier-Stokes equations, together with the porous flow model for the radiator and the condenser, were solved to simulate front end air flow and the engine compartment flow simultaneously. These transport equations were discretized based on a finite-volume method in a transformed domain. The computational results for a simplified engine compartment showed overall flow information, such as the cooling air flow through the radiator and the condenser, the effects of an air dam, and the effects of fresh air vents near the top of the radiator and the condenser. Comparison of the available experimental data with the analysis showed excellent prediction of the cooling air flow through the radiator and the condenser.
Technical Paper

The P2000 Body Structure

1998-09-29
982405
The objective of the P2000 body structure design was to provide a body structure with 50% of the mass of current mid-size production vehicles while maintaining all the safety, durability, NVH and other functional attributes. In addition, the design was to be consistent with the PNGV affordability objectives and high volume production by 2005. This paper describes the P2000 body structure including the structural philosophy, project constraints on the design, manufacturing processes, supporting analyses, assembly processes and unique material and design concepts which resulted in the 50% weight reduction from comparable production vehicles.
Technical Paper

The Effects of Internal Friction on Automotive Latch and Release System Behavior

2019-04-18
2019-01-5025
Physical tests and analysis of a typical automobile latch and outside handle release mechanism are performed to determine the effects of friction on the systems dynamic response. An automobile side door outside handle, outside handle rod linkage, and latch are mounted to a rigid fixture that is constrained by bearings to a “drop tower.” The fixture is released from controlled heights onto a compliant impact surface resulting in a constant duration acceleration transient of varying amplitude. An instrumented door latch striker is designed into the fixture to engage the latch. The pre-drop interface load between the latch and striker is adjusted allowing its effect on the dynamic behavior to be characterized. The latch position and the interface load between the latch and striker are monitored throughout the test. The results of the test show that friction forces internal to the latch significantly affect the quasistatic and dynamic behavior of the latching system.
Technical Paper

The Effect of Seal Stiffness on Door Chucking and Squeak and Rattle Performance

2004-03-08
2004-01-1562
Traditionally, door seals are designed to achieve good wind noise performance, water leakage and door closing effort in a vehicle design and development process. However, very little is known concerning the effect of door seal design on vehicle squeak and rattle performance. An earlier research work at Ford indicates a strong correlation between the diagonal distortions of body closure openings (in a low frequency range 0 - 50 Hz) and overall squeak and rattle performance. Another research at Ford reveals that relative accelerations between door latch and striker in a low frequency region (0 - 50 Hz) correlate well with door chucking performance. The findings of this research work enable engineers to assess squeak and rattle and door chucking performance using vehicle low frequency NVH CAE models at a very early design stage.
Technical Paper

The Effect of High Mileage Spot Weld Degradation on Vehicle Body Joint Stiffness

2001-03-05
2001-01-0426
Joint stiffness is a major contributor to the vehicle body overall bending and torsional stiffness which in turn affects the vehicle NVH performance. Each joint consists of spot welds which function as load paths between adjacent sheet metal. Spot welds tend to lose structural integrity as a result of fatigue, loosening, aging, wear and corrosion of parts as a vehicle accumulates mileage. Experimental methods are used to identify potential degradation mechanisms associated with a spot weld. A CAE model which simulates a vehicle body joint generically is used to determine the effects of each individual degradation mode of a spot weld on joint stiffness. A real life B-pillar to roof joint CAE model of a production vehicle is then employed to examine the significance of weld distribution on joint stiffness degradation. The knowledge derived from this study can be used as a guidance in designing vehicle body structures with respect to spot weld distribution.
Technical Paper

The Application of Magnesium Die Casting to Vehicle Closures

2005-04-11
2005-01-0338
During the last decade, advances in magnesium die casting technology have enabled the production of large lightweight thin walled die castings that offer new approaches for low investment body construction techniques. As a result, many OEMs have expressed an interest in magnesium door closure systems due to investment reduction opportunities, coupled with potential weight savings of up to 50%. However, for such applications, product engineers are faced with the challenge of designing for stiffness and strength in crash critical applications with a material of lower modulus and ductility compared to wrought sheet product. Concept designs for side door systems have been presented in the literature, and indicate that structural performance targets can be achieved. However, to date, series production designs feature a multitude of supplementary sheet metal reinforcements, attached to die castings, to handle structural loads.
Technical Paper

The 1997 Chevrolet Corvette Structure Architecture Synthesis

1997-02-24
970089
This paper describes the design, synthesis-analysis and development of the unique vehicle structure architecture for the fifth generation Chevrolet Corvette, ‘C5’, which starts in the 1997 model year. The innovative structural layout of the ‘C5’ enables torsional rigidity in an open roof vehicle which exceeds that of all current production open roof vehicles by a wide margin. The first structural mode of the ‘C5’ in open roof configuration approaches typical values measured in similar size fixed roof vehicles. Extensive use of CAE and a systems methodology of benchmarking and requirements rolldown were employed to develop the ‘C5’ vehicle architecture. Simple computer models coupled with numerical optimization were used early in the design process to evaluate every design concept and alternative iteration for mass and structural efficiency.
Technical Paper

Testing and Finite Element Modeling of Hydroform Frames in Crash Applications

2007-04-16
2007-01-0981
Hydroformed components are replacing stamped parts in automotive frames and front end and roof structures to improve the crash performance of vehicles. Due to the increasing application of hydroformed components, a better understanding of the crash behavior of these parts is necessary to improve the correlation between full-vehicle crash tests and FEM analysis. Accurately predicting the performance of hydroformed components will reduce the amount of physical crash testing necessary to develop the new components and new vehicles as well as reduce cycle time. Virgin material properties are commonly used in FEM analysis of hydroformed components, which leads to erroneous prediction of the full-vehicle crash response. Changes in gauge and material properties during the hydroforming process are intuitive and can be reasonably predicted by using forming simulations. The effects of the forming process have been investigated in the FEA models that are created for crash analyses.
Technical Paper

Technology of Front End Module to Automotive Vehicles

2003-11-18
2003-01-3669
The front end module technology is a system developed to make the interface with vehicle body in accordance with costumer requirements. This modular system also has characteristics to reinforce the structure (chassis, main rails, shotguns), respecting its robustness (tolerances of the body) in accordance with NVH performance. The decision of having a FEM design made by steel and plastic was taken due to NVH specification, impact and safety requirements. Other items were either considered such as: fixation on the body of the vehicle, constraints between bumper beam and engine cooling module. Simulation tools including: durability test (static and dynamic) and modal F.E.A analysis, CAE system, crash test performance, aerodynamics required to insure results desired results.
Technical Paper

THE CADILLAC FRAME: A New Design Concept for Lower Cars

1958-01-01
580014
THE 1957 Cadillac frame is a significant step in design progress toward the ever lower passenger cars demanded by customers and, therefore, car manufacturers. Stemming from tests and experimental designs in process since 1950, this frame combines reduction in height with a slight increase in structural efficiency. It reverses the trend toward the more costly and heavier structures usually associated with lower cars. Mr. Milliken discusses in Part I the steps Cadillac has taken in the last 19 years to reduce the height 9½ in. to 55½ in. The “Tubular Cenrer-X” frame of the 1957 Eldorado Brougham was the latest and most successful answer to the problem. In Part II Mr. Parker describes the A. O. Smith Corp.'s development of the basic idea and the experimental phases and testing which led to the production designs.
Technical Paper

THE BUICK Air Poise SUSPENSION

1958-01-01
580046
THIS paper describes the springs, control system, and ride of the air suspension system on the 1958 Buick. The system is a semiclosed one, providing a variable-rate suspension, automatic leveling and trim control, and manual lift. The latter feature is a knob below the instrument panel which can be operated when necessary to cope with unusual clearance conditions. The car remains at the same height with loads of up to five passengers and 500 lb in the trunk. The authors describe the road-holding ability of a car with this suspension system as excellent.
X