Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Glass Design Optimization Using a CFD/SEA Model

2007-05-15
2007-01-2306
A new methodology to predict vehicle interior wind noise using CFD results has been developed. The CFD simulation replaces wind tunnel testing for providing flow field information around vehicle greenhouse. A loadcase model based on the CFD results is used to excite an SEA vehicle model. This new approach has been demonstrated on a production vehicle with success for the frequency range of 250-10K Hz. The CAE prediction of interior wind noise agrees within 0.2 sones from wind tunnel testing. The model has been used to evaluate wind noise performance with different door glass design parameters. A glass thickness change from 3.8 mm to 4.8 mm results in 1.1 sones improvement, which agrees well to 1.4 sones improvement from testing. Laminated glass with about 3 times higher damping results in 2.5 sones improvement. This methodology using CFD results can be used in the early stage of product development to impact designs.
Technical Paper

Vane Pump Whining Noise Reduction by Vane Spacing Optimization

2019-04-02
2019-01-0841
A traditional vane type oil pump used inside the engines and the transmissions has equal angles or spacing between the vanes. The equal spacing intensifies pressure fluctuations generated within the pump leading to narrowband pressure spikes at the pump main order and its harmonics. Unequal spacing, however, can relax the severity of the spikes by breaking down the narrowband peaks and distributing them over a larger frequency range. Optimization of the angles within the pump design constraint can maximize the benefit of unequal spacing in reducing the pressure pulsations for a lower risk of engine or transmission whine. The scope of this paper is around the optimization process for vane spacing and different objective functions which can be used to obtain optimized solutions. The simulation results for optimized spacing based on two different objective functions for 7, 8 and 9 vanes are presented. The design constraints for the optimization are discussed as well.
Technical Paper

Using Machine Learning to Guide Simulations Over Unique Samples from Trip Profiles

2018-04-03
2018-01-1202
Electric vehicles are highly sensitive to variations in environmental factors (like temperature, drive style, grade, etc.). The distribution of real-world range of electric vehicles due to these environmental factors is an important consideration in target setting. This distribution can be obtained by running several simulations of an electric vehicle for a number of high-frequency velocity, grade, and temperature real-world trip profiles. However, in order to speed up simulation time, a unique set of drive profiles that represent the entire real-world data set needs to be developed. In this study, we consider 40,000 unique velocity and grade profiles from various real-world applications in EU. We generate metadata that describes these profiles using trip descriptor variables. Due to the large number of descriptor variables when considering second order effects, we normalize each descriptor and use principal component analysis to reduce the dimensions of our dataset to six components.
Technical Paper

Use of Plastic Trim Fasteners for Automotive Trimming Applications

2017-03-28
2017-01-1304
For many years, the use of in-mold fasteners has been avoided for various reasons including: not fully understanding the load cases in the part, the fear of quality issues occurring, the need for servicing, or the lack of understanding the complexity of all failure modes. The most common solution has been the use of secondary operations to provide attachments, such as, screws, metal clips, heat staking, sonic welding or other methods which are ultimately a waste in the process and an increase in manufacturing costs. The purpose of this paper is to take the reader through the design process followed to design an in-molded attachment clip on plastic parts. The paper explores the design process for in-molded attachment clips beginning with a design concept idea, followed by basic concept testing using a desktop 3D printer, optimizing the design with physical tests and CAE analysis, and finally producing high resolution 3D prototypes for validation and tuning.
Technical Paper

Upfront Body Structural Optimization using Parametric Concept Modeling

2009-04-20
2009-01-0343
Growing demand for fuel-efficient or light weight vehicle has become a challenge for vehicle development. Upfront engineering process provides more opportunities for engineers to improve body weight efficiency. To accelerate the upfront body development process, the parametric concept modeling technology is commonly employed to generate parametric three-dimensional geometry, joints, modular components, concept welding, and finite element meshes. The topology optimization which determines the best structural layout without weight penalty has also been used during the conceptual design stage. The objective of this research is to explore the feasibility of integrating the advanced parametric concept modeling and both topology optimization and structural optimization technologies into upfront body architecture development process.
Technical Paper

Transfer Function Development in Design for Six Sigma Framework - Part I

2005-04-11
2005-01-1215
Transfer functions, one of core components in Design for Six Sigma (DFSS), provide the needed relationships between design, process and materials parameters and the CTQs (Critical-to-Quality characteristics) in the product and process development cycle. Transfer function provides direct method for understanding and representing an over all product and process function. Transfer function also provides a strategy for customer voice cascade, function decomposition, physical modeling and concept generation. The concept of transfer function is not new. However, the development of transfer function is not trivial and is a creative and challenging task. In part I of this paper, we will discuss how to develop a transfer function in the DFSS framework. In part II of this paper, we devote our efforts in the discussion of selecting the best transfer function for design evaluation and optimization.
Technical Paper

Trail-Braking Driver Input Parameterization for General Corner Geometry

2008-01-02
2008-01-2986
Trail-Braking (TB) is a common cornering technique used in rally racing to negotiate tight corners at (moderately) high speeds. In a previous paper by the authors it has been shown that TB can be generated as the solution to the minimum-time cornering problem, subject to fixed final positioning of the vehicle after the corner. A TB maneuver can then be computed by solving a non-linear programming (NLP). In this work we formulate an optimization problem by relaxing the final positioning of the vehicle with respect to the width of the road in order to study the optimality of late-apex trajectories typically followed by rally drivers. We test the results on a variety of corners. The optimal control inputs are approximated by simple piecewise linear input profiles defined by a small number of parameters. It is shown that the proposed input parameterization can generate close to optimal TB along the various corner geometries.
Journal Article

Towards Optimization of Multi-material Structure: Metamodeling of Mixed-Variable Problems

2016-04-05
2016-01-0302
In structural design optimization, it is challenging to determine the optimal dimensions and material for each component simultaneously. Material selection of each part is always formulated as a categorical design variable in structural optimization problems. However, it is difficult to solve such mixed-variable problems using the metamodelbased strategy, because the prediction accuracy of metamodels deteriorates significantly when categorical variables exist. This paper investigates two different strategies of mixed-variable metamodeling: the “feature separating” strategy and the “all-in-one” strategy. A supervised learning-enhanced cokriging method is proposed, which fuses multi-fidelity information to predict new designs’ responses. The proposed method is compared with several existing mixed-variable metamodeling methods to understand their pros and cons. These methods include Neural Network (NN) regression, Classification and Regression Tree (CART) and Gaussian Process (GP).
Technical Paper

Topology Driven Design of Under-Hood Automotive Components for Optimal Weight and NVH Attributes

2019-04-02
2019-01-0834
Weight is a major factor during the development of Automotive Powertrains due to stringent fuel economy requirements. Light weighting constitutes a challenge to the engineering community when trying to deliver quieter powertrains. For this reason, the NVH (Noise Vibration Harshness) CAE engineers are adopting advanced vibro-acoustic simulation methods combined with topology optimization methods to drive the design of the under hood components for Noise Vibration and Harshness. Vibro-acoustic computational methods can be complex and require significant computation effort. Computation of Equivalent Radiated Power (referred to as ERP) is a simplified method to assess maximum dynamic radiation of components for specific excitations in frequency response analysis which in turn affects radiated sound. Topology Optimization is a mathematical technique used to find the best material distribution for structural systems in order to deliver a specific objective under clearly defined constraints.
Journal Article

Tire Tread Performance Modification Utilizing Polymeric Additives

2017-03-28
2017-01-1502
Tire manufacturers have long grappled with the challenge of balancing the conflicting tire attributes of traction, rolling resistance, and treadwear. Improvements to one of these “magic triangle” attributes often comes at the expense of the other attributes. Recent regulations have further increased the pressure on manufacturers to produce optimized tires with minimal performance compromises. In order to meet this challenge, the tire industry is looking to new material systems beyond the traditional tire tread components. Polymeric materials beyond the base elastomers and processing oils used in tread provide opportunities to modify the physical and viscoelastic properties of tread. In this study, various polymeric materials were evaluated as additives in a model tire tread formulation. Hydrocarbon resin, high styrene resin, and thermoplastic styrene elastomers were added to the model formulation at various loading levels and through various addition strategies.
Technical Paper

Time to Torque Optimization by Evolutionary Computation Methods

2017-03-28
2017-01-1629
Time to torque (TTT) is a quantity used to measure the transient torque response of turbocharged engines. It is referred as the time duration from an idle-to-full step torque command to the time when 95% of maximum torque is achieved. In this work, we seek to control multiple engine actuators in a collaborative way such that the TTT is minimized. We pose the TTT minimization problem as an optimization problem by parameterizing each engine actuator’s transient trajectory as Fourier series, followed by minimizing proper cost function with the optimization of those Fourier coefficients. We first investigate the problem in CAE environment by constructing an optimization framework that integrates high-fidelity GT (Gamma Technology) POWER engine model and engine actuators’ Simulink model into ModeFrontier computation platform. We conduct simulation optimization study on two different turbocharged engines under this framework with evolutionary computation algorithms.
Technical Paper

The 1997 Chevrolet Corvette Structure Architecture Synthesis

1997-02-24
970089
This paper describes the design, synthesis-analysis and development of the unique vehicle structure architecture for the fifth generation Chevrolet Corvette, ‘C5’, which starts in the 1997 model year. The innovative structural layout of the ‘C5’ enables torsional rigidity in an open roof vehicle which exceeds that of all current production open roof vehicles by a wide margin. The first structural mode of the ‘C5’ in open roof configuration approaches typical values measured in similar size fixed roof vehicles. Extensive use of CAE and a systems methodology of benchmarking and requirements rolldown were employed to develop the ‘C5’ vehicle architecture. Simple computer models coupled with numerical optimization were used early in the design process to evaluate every design concept and alternative iteration for mass and structural efficiency.
Technical Paper

System Level Durability Engineering in CAE

2006-03-01
2006-01-1981
This paper will discuss the vehicle top-down design approach that includes the non-linearity and sub-system interactions such as tire and road, (left and right) interaction between two or more parts connected by bushings, springs, bolts, stabilizer-bar, etc… The proposed method would allow for the inclusion of realistic boundary conditions and proper load simulation, and it would provide the ability to visualize and evaluate dynamic structural phenomena and complex component interaction. This approach would also facilitate the evaluation of design changes that may affect load propagation and/or load magnitude. All of the advantages of the sub-system analysis method mentioned above would allow for a greater understanding of the sub-system as a whole and help correctly identify the design requirements needed for the individual components that make up such chassis subsystems.
Technical Paper

Structural Optimization for Vehicle Pitch and Drop

2006-04-03
2006-01-0316
The optimization method and CAE analysis have been widely used in structure design for crash safety. Combining the CAE analysis and optimization approach, vehicle structure design for crash can be implemented more efficiently. One of the recent safety desirables in structure design is to reduce vehicle pitch and drop. At frontal impact tests with unbelted occupants, the interaction between occupant's head and interior header/sun visor, which is caused by excessive vehicle pitch and drop, is not desired in vehicle crash development. In order to comply with the federal frontal crash requirements for unbelted occupant, it is necessary to manage the vehicle pitch and drop by improving structure design. In this paper, a systematic process of CAE analysis with optimization approach is applied for discovering the major structural components affecting vehicle pitch and drop.
Technical Paper

Structural Optimization for Crash Pulse

2005-04-11
2005-01-0748
In vehicle safety engineering, it is important to determine the severity of occupant injury during a crash. Computer simulations are widely used to study how occupants move in a crash, what they collide during the crash and thus how they are injured. The vehicle motion is typically defined for the occupant simulation by specifying a crash pulse. Many computer models used to analyze occupant kinematics do not calculate both vehicle motion and occupant motion at the same time. This paper presents a framework of response surface methodology for the crash pulse prediction and vehicle structure design optimization. The process is composed of running simulation at DOE sampling data points, generating surrogate models (response surface models), performing sensitivity analysis and structure design optimization for time history data (e.g., crash pulse).
Technical Paper

Stretch Flanging Formability Prediction and Shape Optimization

2006-04-03
2006-01-0351
Flanging is a secondary operation in sheet metal forming processes. Traditionally, the design of flange shape and trim line is based on an engineer's experience. It takes several iterations to achieve the desired flange geometry because of potential splits. In this paper, an efficient CAE-based tool is developed to quickly predict the formability of a given flange design and enable the optimization of trim lines. A numerical algorithm is formulated in this CAE tool to convert the 3D flanging process into an equivalent in-plane deformation problem. The developed CAE tool is also integrated with the optimization software LS-OPT for trim line design.
Technical Paper

Statistical Analysis of Rigid Body Modes of Engine Mounting System Due to Mount Rates Variability

2006-10-31
2006-01-3466
While the engine mount rates need to be optimized to achieve the required frequency alignment and modal decoupling for quality performance, the robustness of the system needs to be studied as well. If a system exhibits acceptable modal characteristics with nominal optimized rates, the sensitivity of the system to variation of the rates from their nominal values affects the robustness of the system. Different factors can cause variation of the rates. Among them are rate changes from part to part arising from manufacturing process. In this paper the effect of mount rates variability on the modal characteristics is discussed. Monte Carlo simulation is used to predict how the rigid body modes and their couplings vary when the rate for each mount changes according to its statistical parameters. Through different examples the statistical variability of the modes to the rates variability is presented.
Technical Paper

Sound Synthesis for an Engine Air Induction System

2007-11-28
2007-01-2841
Sound Quality is one of the most important factors to achieve a successful design for Engine Air Induction Systems. Vehicle and bench testing, and simulation tools can be used in order to optimize and refine emitted noise. One difficulty on using simulation in advanced development phases is the necessity to interpret the response curves and assess if sound quality is acceptable. One recent and promising area to help simulation interpretation is the sound synthesis of the emitted noise. This paper presents a simple procedure and example with the objective of reproducing the emitted noise, which allows subjective assessments of different tuning concepts. The example, even a simple one, shows the advantage to finally hear what was simulated.
Technical Paper

Six Sigma Methodology Application for Performance Evaluation of Different Configurations of Seat Belts Reinforcements during a Project Development

2007-11-28
2007-01-2665
The relation cost versus performance in the design of an automobile is crucial for its success. These two characteristics, much like the project development timing, are closely related to the attributes that the new design must achieve (e.g. weight, fuel economy, torsional stiffness, NVH, safety, etc.). In this respect, the design optimization of body reinforcements (i.e. part thickness, quantity of reinforcements, and number of spot welds) contributes greatly to a sound and robust project concept. This paper describes one application of 6-Sigma methodology to evaluate the performance of different configurations of seat belt reinforcements resulting in an optimized concept that achieved the proposed performance targets with weight and sub-assembly complexity reduction. Using a Design of Experiments (DOE) and Finite Element Analysis (FEA), each proposal was evaluated for its resistance to plastic deformation.
Technical Paper

Simulation of Flow Control Devices in Support of Vehicle Drag Reduction

2018-04-03
2018-01-0713
Flow control devices can enable vehicle drag reduction through the mitigation of separation and by modifying local and global flow features. Passive vortex generators (VG) are an example of a flow control device that can be designed to re-energize weakly-attached boundary layers to prevent or minimize separation regions that can increase drag. Accurate numerical simulation of such devices and their impact on the vehicle aerodynamics is an important step towards enabling automated drag reduction and shape optimization for a wide range of vehicle concepts. This work demonstrates the use of an open-source computational-fluid dynamics (CFD) framework to enable an accurate and robust evaluation of passive vortex generators in support of vehicle drag reduction. Specifically, the backlight separation of the Ahmed body with a 25° slant is used to evaluate different turbulence models including variants of the RANS, DES, and LES formulations.
X