Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

the potential of Unconventional Powerplants for Vehicle Propulsion

1959-01-01
590039
COMPARISON of work capacity per unit mass and volume of different energy carriers shows that liquid hydrocarbons are superior to other energy sources. Solar and nuclear powerplants as well as their use in conjunction with a steam engine are examined in this paper. Suitability of an electric drive is discussed. Using a production 2-stroke diesel engine and its development forecast, a comparison is made of spark ignition, diesel, and gas turbine engines. The status of the free-piston engine turbine combination is reviewed.
Technical Paper

Weld Line Factors for Thermoplastics

2017-03-28
2017-01-0481
Weld lines occur when melt flow fronts meet during the injection molding of plastic parts. It is important to investigate the weld line because the weld line area can induce potential failure of structural application. In this paper, a weld line factor (W-L factor) was adopted to describe the strength reduction to the ultimate strength due to the appearance of weld line. There were two engineering thermoplastics involved in this study, including one neat PP and one of talc filled PP plastics. The experimental design was used to investigate four main injection molding parameters (melt temperature, mold temperature, injection speed and packing pressure). Both the tensile bar samples with/without weld lines were molded at each process settings. The sample strength was obtained by the tensile tests under two levels of testing speed (5mm/min and 200mm/min) and testing temperatures (room temperature and -30°C). The results showed that different materials had various values of W-L factor.
Technical Paper

Wall Film Dynamics Modeling for Impinging Sprays in Engines

2004-03-08
2004-01-0099
This paper proposes a film dynamics model for liquid film resulting from fuel spray impinging on a wall surface. It is based on a thin film assumption and uses numerical particles to represent the film to be compatible with the particle spray models developed previously. The Lagrangian method is adopted to govern the transport of the film particles. A new, statistical treatment was introduced of the momentum exchange between the impinging spray and the wall film to account for the directional distribution of the impinging momentum. This model together with the previously published models for outgoing droplets constitutes a complete description of the spray wall impingement dynamics. For model validation, films resulting from impinging sprays on a flat surface with different impingement angles were calculated and the results were compared with the corresponding experimental measurements.
Journal Article

Using Ejector Diluters to Sample Vehicle Exhaust at Elevated Pressures and Temperatures

2008-10-06
2008-01-2434
This paper presents an alternative and relatively simple method which allows the use of ordinary ejector-type diluters over a wide range of sample inlet conditions including elevated pressures and temperatures. After calibration of the ejector diluter, the dilution can be accurately characterized using only the pressures at the inlet and the outlet of the diluter and the sample temperature. The method is based on a semi-empirical, stationary model taking into account the critical parameters needed to predict the dilution factor. Under steady state operation it achieves accuracies estimated to be below ±8% (95% confidence interval) for diluter inlet pressures in the range of 1000 - 4000 mbar absolute and temperatures between 20 - 200°C. Performance under actual vehicle testing conditions is evaluated upstream of the DPF for a diesel vehicle run on a chassis dynamometer.
Technical Paper

Using Artificial Ash to Improve GPF Performance at Zero Mileage

2019-04-02
2019-01-0974
Gasoline particulate filters (GPF) with high filtration efficiency (>80%) at zero mileage are in growing demand to meet increasingly tight vehicle emission standards for particulate matter being implemented in US, EU, China and elsewhere. Current efforts to achieve high filter performance mainly focus on fine-tuning the filter structure, such as the pore size distribution and porosity of the bare substrate, or the washcoat loading and location of catalyzed substrates. However, high filtration efficiency may have a cost in high backpressure that negatively affects engine power. On the other hand, it has been recognized in a few reports that very low amounts of ash deposits (from non-combustible residue in the exhaust) can significantly increase filtration efficiency with only a mild backpressure increase.
Technical Paper

Unregulated Emissions from a PROCO Engine Powered Vehicle

1978-02-01
780592
Unregulated emissions, i.e., emissions which are not currently regulated by EPA, have been measured from a 7.5 L (460 CID) PROCO engine powered vehicle operating at 50 kph on a chassis dynamometer. A dilution tube was used. Emphasis was on particulate emissions, which were characterized physically and chemically. A comparison is made to recent similar measurements on Diesel and conventional gasoline powered vehicles.
Technical Paper

Understanding of Intake Cam Phasing Effects on the Induction and Fuel-Air Mixing in a DISI Engine

2004-06-08
2004-01-1947
Variable Cam Timing (VCT) has been proven to be a very effective method in PFI (Port Fuel Injection) engines for improved fuel economy and combustion stability, and reduced emissions. In DISI (Direct Injection Spark Ignition) engines, VCT is applied in both stratified-charge and homogeneous charge operating modes. In stratified-charge mode, VCT is used to reduce NOx emission and improve combustion stability. In homogeneous charge mode, the function of VCT is similar to that in PFI engines. In DISI engine, however, the VCT also affects the available fuel-air mixing time. This paper focuses on VCT effects on the induction process and the fuel-air mixing homogeneity in a DISI engine. The detailed induction process with large exhaust-intake valve overlap has been investigated with CFD modeling. Seven characteristic sub-processes during the induction have been identified. The associated mechanism for each sub-process is also investigated.
Technical Paper

Unburned Hydrocarbon Emissions from Stratified Charge Direct Injection Engines

2003-10-27
2003-01-3099
The sources of unburned hydrocarbon (UHC) emissions in direct injection stratified charge engines are presented. Whereas crevices in the combustion chamber are the primary sources of UHC emissions in homogeneous charge engines, lean quenching and liquid film layers dominate UHC emissions in stratified charge operation. Emissions data from a single cylinder engine, operating in stratified charge mode at a low speed / light load condition is summarized. This operating point is interesting in that liquid film formation, as evidenced by smoke emissions, is minimal, thus highlighting the lean quenching process. The effects of operating parameters on UHC emissions are demonstrated via sweeps of spark advance, injection timing, manifold pressure, and swirl level. The effects of EGR dilution are also discussed. Spark advance is shown to be the most significant factor in UHC emissions. A semi-empirical model for UHC emissions is presented based on the analysis of existing engine data.
Journal Article

Twin-LNT System for Advanced Diesel Exhaust Gas Aftertreatment

2017-03-28
2017-01-0935
The most significant challenge in emission control for compression ignited internal combustion engines is the suppression of NOx. In the US, NOx-levels have faced a progressive reduction for several years, but recently the introduction of the Real Driving Emissions legislation (RDE) in Europe has not only significantly increased the severity of the required emission reduction but now is in the advent of stretching technology to its limits. Emission control is based on engine-internal optimization to reduce the engine-out emissions in conjunction with aftertreatment technologies, that are either Selective Catalytic Reduction (SCR) or Lean NOx Trap (LNT) based systems. Due to its ability to control high amounts of NOx, SCR is widely used in heavy-duty applications and is becoming more popular in light-duty and passenger car applications as well.
Technical Paper

Transient NOx Emission Reduction Using Exhaust Oxygen Concentration Based Control for a Diesel Engine

2005-04-11
2005-01-0372
Meeting EPA Tier 2 emission standards presents a great challenge to engine manufacturers. In addition to having an actively controlled aftertreatment system, engine-out NOx emission needs to be reduced significantly to achieve regulatory compliance. Using advanced combustion methods, such as low temperature combustion and/or HCCI, has been shown to reduce engine-out NOx emissions. However, all this new combustion technologies are yet to permeate down into any production system. In current practice, large amount of exhaust gas recirculation (EGR) into the cylinders is widely used to reduce emissions. However, NOx emission from transient engine operation still constitutes a very large percentage of the total NOx output during a Federal Test Procedure (FTP) cycle and has yet to be adequately addressed. Currently, the EGR flow is controlled using the intake mass airflow (MAF) measurement.
Technical Paper

Transient Fuel Modeling and Control for Cold Start Intake Cam Phasing

2006-04-03
2006-01-1049
Advancing intake valve timing shortly after engine crank and run-up can potentially reduce vehicle cold start hydrocarbon (HC) emissions in port fuel injected (PFI) engines equipped with intake variable cam timing (iVCT). Due to the cold metal temperatures, there can be significant accumulation of liquid fuel in the intake system and in the cylinder. This accumulation of liquid fuel provides potential sources for unburned hydrocarbons (HCs). Since the entire vehicle exhaust system is cold, the catalyst will not mitigate the release of unburned HCs. By advancing the intake valve timing and increasing valve overlap, liquid fuel vaporization in the intake system is enhanced thereby increasing the amount of burnable fuel in the cylinder. This increase in burnable HCs must be countered by a reduction in injector-delivered fuel via a compensator that reacts to cam movement.
Technical Paper

Transient CFD Simulations of a Bell Sprayer

1998-09-29
982291
A methodology is developed that incorporates high resolution CFD flowfield information and a particle trajectory simulation, aimed at addressing Paint Transfer Efficiency (PTE) for bell sprayers. Given a solid model for the bell sprayer, the CFD simulation, through automeshing, determines a high resolution Cartesian volume mesh (14-20 million cells). With specified values of the initial shaping air, transient and steady-state flow field information is obtained. A particle trajectory visualization tool called SpraySIM uses this complicated flowfield information to determine the particle trajectories of the paint particles under the influence of drag, gravity and electrostatic potential. The sensitivity of PTE on shaping air velocity, charge-to-mass ratio, potential, and particle diameter are examined.
Journal Article

Tire Tread Performance Modification Utilizing Polymeric Additives

2017-03-28
2017-01-1502
Tire manufacturers have long grappled with the challenge of balancing the conflicting tire attributes of traction, rolling resistance, and treadwear. Improvements to one of these “magic triangle” attributes often comes at the expense of the other attributes. Recent regulations have further increased the pressure on manufacturers to produce optimized tires with minimal performance compromises. In order to meet this challenge, the tire industry is looking to new material systems beyond the traditional tire tread components. Polymeric materials beyond the base elastomers and processing oils used in tread provide opportunities to modify the physical and viscoelastic properties of tread. In this study, various polymeric materials were evaluated as additives in a model tire tread formulation. Hydrocarbon resin, high styrene resin, and thermoplastic styrene elastomers were added to the model formulation at various loading levels and through various addition strategies.
Technical Paper

Threshold Monitoring of Urea SCR Systems

2006-10-31
2006-01-3548
To meet stringent 2010 NOx emissions, many manufacturers are expected to deploy urea selective catalytic reduction systems. Indications from ARB are that a threshold monitor must be developed to monitor their performance. The most capable monitoring technology at this time relies on NOx sensors. This paper assesses the capability of the NOx sensor as an SCR monitoring device. To this end, the NOx sensor must be able to distinguish between a marginal and a threshold catalyst with enough separation to allow for variability. We present the noise factors associated with the NOx conversion of the SCR system, and analyze what NOx sensor accuracy we need to preserve separation in the face of those noise factors. It is shown that a 1.75 threshold monitor is not feasible with current NOx sensor technology. We analyze the benefit of a partial volume monitor, and show there is no advantage unless the slope error of the NOx sensor is drastically reduced from current levels.
Technical Paper

The Particle Emission Characteristics of a Light Duty Diesel Engine by Using Different Pilot Injections

2010-10-05
2010-01-1959
Pilot injection has been used widely in diesel engines for its NOx and noise reducing characteristics. In this paper, its impacts to the particle emissions were studied using a light-duty common-rail Euro 4 diesel engine with different pilot injection strategies. Three steady-state engine modes were selected from the EU legislative diesel engine test cycle to represent low, medium and high engine speeds and loads. The quantities and injection timings of the pilot injection strategies were then varied. The particle number concentration and size distributions were investigated along with the smoke and regulated gas emissions such as the NOx trade-off. These results indicate how a pilot injection alongside a main injection can increase the particle size compared to a single main injection event. Furthermore, the split injection was closely related to the engine mode.
Journal Article

The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine

2017-08-18
2017-01-9378
The design of modern diesel-powered vehicles involves optimization and balancing of trade-offs for fuel efficiency, emissions, and noise. To meet increasingly stringent emission regulations, diesel powertrains employ aftertreatment devices to control nitrogen oxides, hydrocarbons, carbon monoxide, and particulate matter emissions and use active exhaust warm-up strategies to ensure those devices are active as quickly as possible. A typical strategy for exhaust warm-up is to operate with retarded combustion phasing, limited by combustion stability and HC emissions. The amount of exhaust enthalpy available for catalyst light-off is limited by the extent to which combustion phasing can be retarded. Diesel cetane number (CN), a measure of fuel ignition quality, has an influence on combustion stability at retarded combustion phasing. Diesel fuel in the United States tends to have a lower CN (both minimum required and average in market) than other countries.
Technical Paper

The Influence of Ammonia to NOX Ratio on SCR Performance

2007-04-16
2007-01-1581
It is likely that use of urea-based selective catalytic reduction (SCR) will be needed to meet U.S. Tier 2 diesel emission standards for oxides of nitrogen (NOx). The ideal ratio of ammonia (NH3) molecules to NOx molecules (known as alpha) is 1:1 based on urea consumption and having NH3 available for reaction of all of the exhaust NOx. However, SCR efficiency can be less than 100% at low temperatures in general, and at higher temperatures with high exhaust SCR catalyst space velocities. At the low temperatures where NOx conversion efficiency is low, it may be advantageous to reduce the alpha ratio to values less than one (less NH3 than is needed to convert 100% of the NOx emissions) to avoid NH3 slip. At higher space velocities and high temperatures, the NOx conversion efficiency may be higher with alpha ratios greater than 1. There is however concern that the additional NH3 will be slipped under these conditions.
Technical Paper

The Influence of Ammonia Slip Catalysts on Ammonia, N2O and NOX Emissions for Diesel Engines

2007-04-16
2007-01-1572
The use of urea-based selective catalytic reduction (SCR) is a promising method for achieving U.S. Tier 2 diesel emission standards for NOx. To meet the Tier 2 standards for Particulate Matter (PM), a catalyzed diesel particulate filter (CDPF) will likely be present and any ammonia (NH3) that is not consumed over an SCR catalyst would pass over the CDPF to make nitrous oxide (N2O) emissions and/or oxides of nitrogen (NOx), or exit the exhaust system as NH3. N2O is undesirable due to its high greenhouse gas potential, while NOx production from the slipped NH3 would reduce overall system NOx conversion efficiency. This paper reviews certain conditions where NH3 slip past an SCR system may be a concern, looks at what would happen to this slipped NH3 over a CDPF, and evaluates the performance of various supplier NH3 slip catalysts under varied space velocities, temperatures and concentrations of NH3 and NOx.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 2

2016-04-05
2016-01-0186
Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
Technical Paper

The Effects of Head Gasket Geometry on Engine-Out HC Emissions from S.I. Engines

1999-10-25
1999-01-3580
This study evaluated multi-layer steel and composite head gaskets of various thicknesses (0.43 to 1.5 mm) and fire-ring diameters to determine the influence of head gasket crevices on engine-out hydrocarbon (HC) emissions. The upper limit in the percent reduction in HC emissions from gasket-design modifications is estimated to be about 15%. At part-load conditions, the lowest HC emissions were measured for head-gasket thickness of about 1 mm. Significantly smaller thicknesses of the order of 0.4 mm result in an increase in HC emissions. Substantial hydrocarbon-emissions advantage may be realized by minimizing the gasket-to-cylinder bore offset.
X