Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Engine Optimization from Design to Experimentation

2017-01-10
2017-26-0264
Virtual modeling of engine and predicting the performance and emissions is now becoming an essential step in engine development for off-road application due to the flexibility in tuning of the combustion parameters and requirement of shorter development times. This paper presents an approach where the test bed calibration time is reduced using virtual techniques, such as 1D thermodynamic simulation and 3D CFD combustion simulation for 4 cylinders TCIC engine complying with Stage IIIA emission norms. 1D thermodynamic simulation has played an important role in the early stage development of an engine for selection of engine sub systems like turbocharger, manifolds, EGR system, valve timings etc. The application of 1D Simulation tool for combustion system development, focusing on NOx emissions for an off road multicylinder mechanical injection diesel engine is discussed.
Technical Paper

Utilization of Knowledge Based Utilities for Streamlining the Characterization Procedure of Acoustic Material Properties

2014-04-28
2014-28-0034
Designers and analysts need to compare and conduct synthesis for selection of materials based on their properties involving simulation, optimization and correlation with test data. An example is that of acoustic material properties such as random and normal incidence sound absorption coefficient and sound transmission loss. The international test standards necessitate having standard operating procedures for characterization of these materials. This procedure is quite involved and addresses steps including test data acquisition, post processing, calculations, classification, report generation and most importantly, storage of such innumerable material properties in a structured manner to facilitate ease of retrieval and updating of properties. It is also highly desirable to have a synergy of the databank directly with simulation tools. Further, all of these steps need to be accurate, non-speculative and quick.
Technical Paper

Use of Combined CAE and Experimental Testing Approach for Engine Noise Reduction

2015-01-14
2015-26-0123
The work presented in this paper deals with the use of combined Computer Aided Engineering (CAE) and experimental testing approach for reducing engine noise. The paper describes a systematic approach for giving solutions to the structure borne engine noise related problems. Noise Source Identification (NSI) was carried out on diesel engine to identify noise radiating sources, ranking of noise sources was carried out and contribution of individual engine component in radiated Sound Power Level (SWL) was computed. Detailed Finite Element Model (FEM) of engine assembly was developed and model was correlated in terms of natural frequencies and transfer functions by performing modal testing. Correlated FEM was used for predicting surface vibration velocities under various engine speeds and loading conditions in frequency domain. Velocities so predicted in frequency domain were used as an input for SWL prediction using Boundary Element Method (BEM) approach.
Technical Paper

The Application of the Simulation Techniques to Predict and Reduce the Interior Noise in Bus Development

2012-04-16
2012-01-0219
In order to reduce development time and costs, application of numerical prediction techniques has become common practice in the automotive industry. Among the wide range of simulation applications, prediction of the vehicle interior noise is still one of the most challenging ones. The Finite Element Method (FEM) is well known for acoustic predictions in the low-frequency range. As part of the development of a full sized bus model, noise levels at Driver Ear Levels (DEL) and Passenger Ear Levels (PEL) were targeted. The structural and acoustic analysis were performed for a bus to reduce interior noise in the low-frequency range. Various counter measures were identified and structural optimization/modifications were performed from virtual simulation to reduce the DEL and PEL. Structure-borne noise due to both road-induced vibration and engine vibration were considered by using FEM techniques.
Technical Paper

Study of In-Cylinder Tumble Effect on Spark Ignition Direct Injection (SI-DI) Engine Performance Using Gasoline, CNG & E85 Fuels and Simulation Technique

2017-01-10
2017-26-0076
Vehicles with direct injection engines employ various methods for mixing fuel and air in an engine cylinder. Efficient mixing increases combustion burn rate, improving combustion stability and knock suppression. Spark ignition engines may use tumble flow motion to generate turbulence, which includes rotational motion generally perpendicular to the cylinder axis to improve air and fuel mixing. Depending on operating conditions, more or less tumble may be advantageous. In this paper the tumble motion of the charge air is studied and simulated only in the suction stroke. A direct injected turbocharged combustion system employing central-mounted multihole injector. This paper presents the comparative study of effect of intake port design with various levels of tumble motion for fuels used in SIDI engines on the engine performance characteristics.
Technical Paper

Sound Quality based Benchmarking Methodology for Vehicle Interior Noise

2013-11-27
2013-01-2853
Greater customer awareness is driving the automotive industry to constantly look to innovate and ensure that greater time, efforts and considerable resources are spent in developing a better vehicle. As we move away from noisy vehicles, the differentiating parameter in vehicles is the perception of quality in the vehicle noise or sound. As the masking effect due to overall vehicle noise level abates, many low noise sources gain prominence, which directly influences the perception of noise refinement. Hence, the concept of vehicle interior noise is not only limited to lower noise levels but has also extended to better sound quality (SQ). SQ technique involves use of relevant parameters for quantifying a subjective quality into an objective quantity. This paper will look at parameters relevant to subjective perception of vehicle interior noise and consider a benchmarking methodology targeting vehicle sound quality.
Technical Paper

Sound Quality Rating of Passenger Car Diesel Powertrains

2017-01-10
2017-26-0189
The parameters such as lower noise levels, quietness, etc. of a vehicle has no longer remained the only driving features since the passenger car buyers are greatly influenced by the perception of the sound. In a scenario like this, the sound quality becomes of great importance especially for smaller diesel powertrains as they are more annoying than their gasoline counterparts. The idling noise is critical as its noise creates the first impression of the vehicle on the buyer. The Indian passenger car market is dominated by diesel cars equipped with smaller engines less than 2 liter capacity. Present work describes the methodology to formulate the equation for annoyance/pleasantness for the diesel powertrains used in Indian passenger cars. The index, Sound Annoyance Rating (SAR) developed through this work is significant for powertrain level target setting and benchmarking purposes.
Technical Paper

Sound Quality Evaluation of a Brake and Clutch Pedal Assembly used for Automotive Applications

2017-01-10
2017-26-0194
Sound Quality (SQ) of brake and clutch pedal assembly plays an important role in contributing to vehicle interior noise and perception of sound. Quiet operation of brake and clutch units also reflects the vehicle built and material quality. Noise emitted from these sub-assemblies has to meet certain acceptance criteria as per different OEM requirements. Not much work has been carried on this over the years to characterize and quantify the same. An attempt has been made in this paper to study the sound quality of brake and clutch pedal assemblies at component level and validate the same by identifying the parameters affecting SQ. Effect on noise at different environmental conditions was studied with typical operating cycles in a hemi-anechoic chamber. The effect of sensor switches integrated within the clutch and brake pedal on sound quality is analyzed. It is found that the operating characteristics of switches drives the noise and SQ.
Technical Paper

Sound Power Assessment, Noise Source Identification and Directivity Analysis of Compaction Machines

2021-09-22
2021-26-0281
NVH has gained importance in the field of earth moving equipment due to the demand of quieter machines and stringent in-cab as well as exterior noise emission norms. Several parts of the world have adopted strict legislation on noise emission by earth moving equipment, but many countries have not adopted any regulations till date. The aim of this study is to help governing bodies as well as machine manufacturers in adopting simple yet accurate testing method for compactor machine. The study consists of directivity analysis, noise source identification, noise source ranking and 4-point microphone position sound power evaluation method applied to compactors with wide range of engine power ratings. All the tests in 4-point method and directivity analysis were performed under stationary as well as dynamic conditions.
Technical Paper

Review on Advanced Low Temperature Combustion Approach for BS VI

2017-01-10
2017-26-0042
With the announcement, as per draft notification GSR 187 (E) dated 19th Feb 2016 issued by MoRTH (Ministry of Road Transport and Highways), on vehicle emission standards to leapfrog from BS IV to BS VI by 2020, diesel engines would be greatly facing challenges to meet the stringent emission requirements of 90% reduction in PM and 50% reduction in NOx emissions simultaneously. Up to BS IV, in-cylinder strategies utilizing higher fuel injection pressure, higher intake boost, lower to moderate EGR, optimized combustion chamber design and lower intake manifold temperature would be sufficient. But meeting emission levels at BS VI levels would require a combination of both in-cylinder combustion control and after treatment system [1]. However, unlike Europe and US markets where wide spread adoption of after treatment solution is viable, for Indian market it would be impeded by infrastructure availability, system cost and cost of ownership.
Technical Paper

Quantification of NVH Parameters in DC Electric Motors Used for Automobile Application

2017-01-10
2017-26-0209
With growing demand of comfort of cars, number of small electric motors used for adjustment of different functional units is steadily increasing. Due to the various rotational components and the forces they accord, electric motors radiate significant amount of noise at high frequencies with tonal components that can be annoying. Motor noise comprises three sources namely: electromagnetic, aerodynamic and mechanical. This study considers mechanical and electromagnetic sources of Electric Power Assisted Steering (EPAS) motor used in passenger cars. This paper describes an approach to assess noise and vibration parameters between field motors and fresh motors. Noise and vibration spectrums are analyzed in terms of frequency contents and dominancy of mechanical sources in sound power radiated by motor is discussed. FE modal analysis of motor is performed and correlated with impact hammer measurements to quantify structure borne energy contribution.
Technical Paper

Physical Testing Methodology and Evaluating Windscreen Wiping with Respect to Vision Zones for Vehicle Category other than M1

2024-01-16
2024-26-0366
The windscreen wiping system is mandatory requirement for automotive vehicle as per Central motor vehicle rules (CMVR). The main scope of the standard is to ensure vision zones to be wiped by wiping system to ensure maximum field of vision to the driver. The evaluation of vision zones as per IS 15802:2008 is generally determined by virtual simulation by OEMs. The limitation of virtual simulation is due to actual tolerances in vehicle, due to seat fitment, ergonomic dimensions, seat cushioning effect and wiper non-effective operation which are not taken into consideration very well off. The testing methodology described in the paper is an in-house developed test method based on SAE recommended practices. With the help of 3D H-point machine and a laser based ‘Theodolite’ equipped with horizontal and vertical angle projections from single pivot point is used to develop various vision zones on an actual vehicle windscreen as per technical data.
Technical Paper

Pass-By Noise Reduction of Light Commercial Vehicle (LCV)

2018-06-13
2018-01-1539
The increasing in popularity of Light Commercial Vehicles (LCV) segment is an emerging trend in the commercial vehicle industry. LCVs are very efficient and cost-effective for transportation of materials and good on short distances or loads of lesser weights. Sensing the market potential, many auto companies have developed LCVs recently. Since LCV segment is price sensitive, low cost single cylinder water cooled diesel engine being used as prime mover. High noise & vibration is inherent feature of diesel engine & it is predominant in single cylinder diesel engine. In order to retain low cost of product, less attention is given on overall noise of vehicle. Also, it is challenging to meet the regulatory limits of Pass-by Noise (PBN) for this category of vehicle. This paper is a development work done for pass-by noise reduction of a diesel powered single cylinder LCV vehicle. A prototype vehicle needs to meet the legislative pass-by noise requirement when tested as per IS0 362 / IS 3028.
Technical Paper

Modal Analysis of Chladni Plate Using Cymatics

2020-09-25
2020-28-0320
This work aims at demonstrating nodes and antinodes at various frequencies of vibrations. Chladni plate is used for this purpose. When the plate is excited because of vibrations from a vibrator source, the sand of the plate creates specific patterns. These patterns are related to the excitation frequency. The sand on the plate moves away from antinodes where the amplitude of the standing wave is maximum and towards nodal lines where the amplitude is minimum or zero, forming patterns known as Chladni figures. The formation of patterns depends on material properties, geometry of plate, and thickness of plate and frequency/vibration pattern of the vibrator. The experimental setup consisted of a aluminum rectangular plate of 16 cm × 16 cm and aluminum circular plate of diameter 16 cm are having thickness of 0.61 mm placed over a mechanical vibrator (GelsonLab HSPW-003), which was driven by a sine wave signal generator (Ningbo Hema scientific).
Technical Paper

Mechanical and Aerodynamic Noise Prediction for Electric Vehicle Traction Motor and Its Validation

2017-01-10
2017-26-0270
With emission norms getting more and more stringent, the trend is shifting towards electric and hybrid vehicles. Electric motor replaces engine as the prime mover in these vehicles. Though these vehicles are quieter compared to their engine counterpart, they exhibit certain annoying sound quality perception. There is no standard methodology to predict the noise levels of these motors. Electric motor noise comprises of mainly three sources viz., Aerodynamic, Electromagnetic and Mechanical. A methodology has been developed to predict two major noise sources of electric motor out of the three above viz. Mechanical and Aerodynamic noise. These two noise sources are responsible for the tonal noise in an electric motor. Aerodynamic noise arises most often around the fan, or in the vicinity of the machine that behaves like a fan. This noise is predominant at higher motor speed and also in electric vehicle due to higher speed fluctuation.
Technical Paper

Measurement and Prediction of Sound Absorption of Sound Package Materials in Large and Small Reverberation Chambers

2017-01-10
2017-26-0195
The paper discusses the methodology for measuring the sound absorption of sound package materials in a different sizes of reverberation chambers. The large reverberation chamber is based on test methods and requirements as per ASTM C423 and ISO 354 standards. Both the test standards are similar and recommend a reverberation chamber volume of at least 125 m3 and 200 m3 respectively for sound absorption measurements from 100 Hz to 5000 Hz. The test sample size requirements are from 5.5 to 6.7 m2 as per ASTM C423 and 10 to 12 m2 as per ISO 354. In the automotive sector passenger car, heavy truck, and commercial vehicle, the parts that are used are much smaller in size than the size prescribed in both the standards. The requirement is to study the critical parameters such as the chamber volume, sample size, reverberation time and cut-off frequency etc. which are affecting the sound absorption property of acoustic material.
Journal Article

Investigation of Squeak and Rattle Problems in Vehicle Components by Using Simulation & Doe Techniques

2021-09-22
2021-26-0293
The automotive and related industries are concentrating their efforts on improving comfort by lowering engine, wind, and road noise and vibrations. However, as background noise levels decrease, the squeaks and rattles (S&R) generated by the vehicle's many components become more noticeable and distracting. As a result of the absence of a dominant noise source from a traditional petrol/diesel car, (S&R) noise becomes more dominant than other types of noise in electric vehicles. In this paper, we propose a novel simulation technique for developing a systematic approach to identifying and solving (S&R) problems in vehicle components/sub-assemblies during the primary stage of product development cycle, thus reducing the overall product development time. This paper will present a novel approach to comprehending various methods and Design of Experiments (DOE) techniques used to determine the root cause of (S&R) problems and to solve those using numerical methods.
Technical Paper

Investigating Scavenge Pressure of a Two Stroke Engine with a View to Alleviate Thermal Conditions

1995-02-01
950227
To improve the performance and durability of two stroke engines, pressure, volume and temperature of crankcase are the important parameters which need optimisation. The paper investigates these scavenge parameters of a small two stroke engine with a view to alleviate its thermal conditions. Investigation of the pressure histories have been done with reference to pressure fluctuations, backflow, Kadenacy effect, list approximation, ring sticking, engine seizure, crankcase volume, crankcase temperature, cylinder barrel temperature, engine speed and physical parameters of the engine. By reducing the crankcase volume by 11 %, the maximum torque has increased by 11 % and shifted from 3000 RPM to 4000 RPM. The maximum power at 6000 RPM has increased by 12 %. Crankcase volume of 2 to 2.5 times the cylinder displacement is considered to be suitable.
Technical Paper

Experimentation for Evaluation of Real Driving Emission Test Routes in India for LDVs

2019-01-09
2019-26-0150
With introduction of Bharat Stage VI (BS VI) norms from 1st April 2020, automotive industry will observe one of most stringent Indian emission regulation implementation in line with International standards. The Bharat Stage VI (BS VI) regulation also mandates for Real Driving Emission (RDE) measurement from 1st April 2020 for data collection and subsequently establishment of RDE compliance Factor (CF) by 1st April 2023. Indian RDE test procedure will be largely based on European RDE with minor changes in terms of climatic conditions, traffic pattern, speed limit, topography, and vehicle population. For performing a successful RDE trial one of the most critical part is selection of a route on which all RDE boundary conditions can be met. This technical paper summarizes the outcome of RDE experiments carried out on Light Duty Vehicles (LDV) in the city of Pune, Mumbai, and Bangalore. The collected data was post processed using CO2 based Moving Average Window (MAW) method.
Technical Paper

Experimental Investigation of Effect of Various Diesel-Ethanol Blends on In-Use Multi-Cylinder Engine Performance and Emission

2024-01-16
2024-26-0075
In India, B7 (a biodiesel mix of 7% by volume in diesel) has been approved for use in diesel engines. Due to the depletion of fossil fuel supplies and tight pollution requirements, alternative diesel fuel has become critical. However, given the properties of diesel, no direct renewable alternative fuel can totally replace diesel. As a result, one of the solutions may be to replace part of the diesel with ethanol. In this inquisition, the impact of various diesel-ethanol blends, counting ED7.7, ED10, ED15 and ED20, were examined on two in-use multi-cylinder engines complying to different emission norms. The two engines under consideration complies with CPCB-I and CPCB-II, which is an Indian legal requirement for stationary Genset engines. For both engines, a 5-mode steady-state test cycle was considered. For each mode, the engine’s performance characteristics, including power, torque, and BSFC, were tested and described.
X