Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Engine Optimization from Design to Experimentation

2017-01-10
2017-26-0264
Virtual modeling of engine and predicting the performance and emissions is now becoming an essential step in engine development for off-road application due to the flexibility in tuning of the combustion parameters and requirement of shorter development times. This paper presents an approach where the test bed calibration time is reduced using virtual techniques, such as 1D thermodynamic simulation and 3D CFD combustion simulation for 4 cylinders TCIC engine complying with Stage IIIA emission norms. 1D thermodynamic simulation has played an important role in the early stage development of an engine for selection of engine sub systems like turbocharger, manifolds, EGR system, valve timings etc. The application of 1D Simulation tool for combustion system development, focusing on NOx emissions for an off road multicylinder mechanical injection diesel engine is discussed.
Technical Paper

Utilization of Knowledge Based Utilities for Streamlining the Characterization Procedure of Acoustic Material Properties

2014-04-28
2014-28-0034
Designers and analysts need to compare and conduct synthesis for selection of materials based on their properties involving simulation, optimization and correlation with test data. An example is that of acoustic material properties such as random and normal incidence sound absorption coefficient and sound transmission loss. The international test standards necessitate having standard operating procedures for characterization of these materials. This procedure is quite involved and addresses steps including test data acquisition, post processing, calculations, classification, report generation and most importantly, storage of such innumerable material properties in a structured manner to facilitate ease of retrieval and updating of properties. It is also highly desirable to have a synergy of the databank directly with simulation tools. Further, all of these steps need to be accurate, non-speculative and quick.
Technical Paper

The Impact of Uncertainty Quantification and Sensitivity Analysis in CAE Simulation based Regulatory Compliance

2024-01-16
2024-26-0294
Computer-aided engineering (CAE) is a routinely used technology for the design and testing of road vehicles, including the simulation of their response to an impact. To increase automotive industry competitiveness by reducing physical test-based type approval and to improve road safety, recent initiatives have been taken by both industry and public authorities to promote the use of virtual testing through numerical simulation as an alternative way to check regulatory compliance. [1] To ensure acceptance of this alternative method, the accuracy of the simulation models and procedures needs to be assured and rated independently of the modelling process, software tools, and computing platform. Similarly, it is also imperative to understand the uncertainties emerging out of different component design parameters and analyze their sensitivity towards producing deviations in the reported results as per the requirements of the regulatory standard.
Technical Paper

The Application of the Simulation Techniques to Predict and Reduce the Interior Noise in Bus Development

2012-04-16
2012-01-0219
In order to reduce development time and costs, application of numerical prediction techniques has become common practice in the automotive industry. Among the wide range of simulation applications, prediction of the vehicle interior noise is still one of the most challenging ones. The Finite Element Method (FEM) is well known for acoustic predictions in the low-frequency range. As part of the development of a full sized bus model, noise levels at Driver Ear Levels (DEL) and Passenger Ear Levels (PEL) were targeted. The structural and acoustic analysis were performed for a bus to reduce interior noise in the low-frequency range. Various counter measures were identified and structural optimization/modifications were performed from virtual simulation to reduce the DEL and PEL. Structure-borne noise due to both road-induced vibration and engine vibration were considered by using FEM techniques.
Technical Paper

Systematic Evaluation of 20% Ethanol Gasoline Blend (E20) as a Potential Alternate Fuel

2017-01-10
2017-26-0072
Utilization of higher ethanol blends, 20% ethanol in gasoline (E20), as an alternate fuel can provide apparent benefits like higher octane number leading to improved anti-knocking properties, higher oxygen content resulting in complete combustion. Apart from technical benefits, use of ethanol blends offer certain widespread socioeconomic benefits including option of renewable source of energy, value addition to agriculture feedstock resulting in increase in farm income, creation of more jobs in rural sector and creating job at local levels. Use of higher blends of ethanol can reduce dependence on foreign crude leading to substantial savings in cost of petroleum import. The impact of higher Gasoline-Ethanol blend (E20), on the fuel system components of gasoline vehicles must be known for assessment of whether the fuel system will be able to perform as intended for the complete design life of the system.
Technical Paper

Synthesis and Characterization of Nickel and Ni-TiO2 Nanocomposite Coatings Processed by Pulse Electro-deposition Technique

2015-01-14
2015-26-0060
Nickel electroplating is commonly used with substrates including steel, aluminum, plastic and zinc die-cast parts because of its high resistance to temperature, corrosion and wear in harsh conditions. To further enhance its tribological and mechanical properties, research works are going on to produce nano-reinforced composites of Ni with various ceramic and rare earth oxides like CeO2, ZrSiO4, SiC, TiO2, etc. The aim of present work is synthesis and characterization of Ni films and Ni based TiO2 nano-composite coating processed by pulse co-electrodeposition technique. Also, to investigate the various properties such as mechanical, wear and corrosion resistance, conductivity & thermal stability of Ni-TiO2 nanocomposites electrodeposited on steel substrate, especially the effects of the amount of nanosized TiO2 particles in Ni-TiO2 nanocomposites.
Journal Article

Study to Compare CO2 Emissions from M1 Bharat Stage VI Passenger Vehicles at Chassis Dynamometer and Indian Real Traffic Conditions

2021-09-22
2021-26-0198
Bharat Stage VI (BS VI) emission norms are already introduced in India from 1st April 2020. The implementation of BS VI emission standards essentially brings Indian motor vehicle regulations on par with most stringent International standards. The BS VI regulation also mandated Real Driving Emission (RDE) measurement with objective to limit regulated pollutants esp. NOX & PN during real use of vehicle. For M1 passenger vehicles Carbon Dioxide (CO2) emissions measured in Lab is also regulated under CAFÉ (Corporate Average Fuel Economy) however, CO2 emission during Real on Road Driving is not regulated. So, this study was carried out to compare CO2 on real road traffic conditions with standard lab conditions. This study was done on a set of BS VI compliant vehicles with diverse characteristic such as engine capacity, fuel type.
Technical Paper

Sound Quality Rating of Passenger Car Diesel Powertrains

2017-01-10
2017-26-0189
The parameters such as lower noise levels, quietness, etc. of a vehicle has no longer remained the only driving features since the passenger car buyers are greatly influenced by the perception of the sound. In a scenario like this, the sound quality becomes of great importance especially for smaller diesel powertrains as they are more annoying than their gasoline counterparts. The idling noise is critical as its noise creates the first impression of the vehicle on the buyer. The Indian passenger car market is dominated by diesel cars equipped with smaller engines less than 2 liter capacity. Present work describes the methodology to formulate the equation for annoyance/pleasantness for the diesel powertrains used in Indian passenger cars. The index, Sound Annoyance Rating (SAR) developed through this work is significant for powertrain level target setting and benchmarking purposes.
Technical Paper

Smart and Compact Simulation Tool for Electric Vehicle Component Sizing

2021-09-22
2021-26-0419
Electric Vehicles (EVs), with its inherent advantage of zero tailpipe emissions, are gaining importance because of aggressive push from government not only to reduce air pollution but also to reduce dependency of fossil fuel. EVs and necessary charging infrastructure along with ‘connected’ technology is redefining mobility. Considering the fast growing EV market, it becomes important for an EV Powertrain Architect to design and develop a powertrain solution having low engineering efforts and satisfying business, market and regulatory requirements at a competitive price. This paper presents a compact, flexible, convenient and smart featured simulation tool for an EV Powertrain Architect for estimating the specifications of key powertrain components such as traction battery and electric motor. The proposed tool takes into consideration the end-user as well as the regulatory requirements of range, maximum speed, acceleration and gradeability.
Technical Paper

Simulation Methodology Development for Vibration Test of Bus Body Structure Code AIS-153:2018

2024-01-16
2024-26-0249
A bus is integral part of public transportation in both rural and urban areas. It is also used for scheduled transport, tourism, and school transport. Buses are the common mode of transport all over the world. The growth in economy, the electrification of public transport, demand in shared transport, etc., is leading to a surge in the demand for buses and accelerating the overall growth of the bus industry. With the increased number of buses, the issue of safety of passengers and the crew assumes special importance. The comfort of driver and passenger in the vehicle involves the vibration performance and therefore, the structural integrity of buses is critically important. Bus safety act depicts the safety and comfort of bus operations, management of safety risks, continuous improvement in bus safety management, public confidence in the safety of bus transport, appropriate stakeholder involvement and the existence of a safety culture among bus service providers.
Technical Paper

Role of Silicone Based Thermal Encapsulants for 2&3W Battery Module Thermal Management Applications

2023-05-25
2023-28-1316
The Indian market for battery-powered electric vehicles (xEV) is growing exponentially in the coming years, fueled by tumbling lithium-ion battery prices and favorable government policies. Lithium-ion battery is leading in clean mobility ecosystem for electric vehicles. LiBs efficient and safe performance for tropical climatic conditions is one of the primary requirements for xEV to succeed in India. The performance of LiBs, however, is impacted due to ambient temperature as well as the heat generated within cell due to the load cycle electrochemical reaction. The acceptable operating temperature region for LiBs normally is between 20 °C to 45 °C and anything outside of this region will lead to degradation of performance and irreversible damages. Therefore, understanding the thermal behavior is very crucial for an efficient battery thermal management.
Technical Paper

Ride-Comfort Analysis for Commercial Truck Using MATLAB Simulink

2019-11-21
2019-28-2428
Ride Comfort forms a core design aspect for suspension and is to be considered as primary requirement for vehicle performance in terms of drivability and uptime of passenger. Maintaining a balance between ride comfort and handling poses a major challenge to finalize the suspension specifications. The objective of this project it to perform ride- comfort analysis for a commercial truck using MATLAB Simulink. First, benchmarking was carried out on a 4x2 commercial truck and the physical parameters were obtained. Further, a mathematical model is developed using MATLAB Simulink R2015a and acceleration- time data is collected. An experimentation was carried out on the truck at speeds of 20 kmph, 30 kmph, 40 kmph and 50 kmph over a single hump to obtain actual acceleration time domain data. The model is then correlated with actual test over a single hump. This is followed by running the vehicle on Class A, B & C road profiles to account for random vibrations.
Technical Paper

Quick Analysis of Elemental Composition of Automotive Materials Using Non-destructive Technique

2023-05-25
2023-28-1327
Energy dispersive X-ray fluorescence (EDXRF) analysis have made it possible to conduct elemental analysis on a variety of fields, including those with environmental, automotive, geological, chemical, pharmaceutical, archaeology, and biological origins. The ability of EDXRF to deliver quick, non-destructive, and multi-elemental analytical findings with increased sensitivity is of great importance. It is a vital tool for quality control and quality assurance applications. Thus, EDXRF plays an important role to compare batch-to-batch products for meeting quality standards. This paper presents application of EDXRF as an effective tool for quick qualitative and quantitative evaluation of given samples.
Technical Paper

Process Modelling of Aluminium Propeller Shaft by Integrated Computational Materials Engineering Approach

2021-09-22
2021-26-0374
An excellent physical and mechanical property makes Aluminium (Al) alloy suitable alternative lightweight materials against steel and cast iron in automotive components. ICME is a computational tool, which integrates the materials information to engineering product performance analysis. MatCalc is ICME tool, which follows the chain rule of process, microstructure, property and performance relationship in materials development. This paper reports the development of Al 6061-T6 propeller shaft through forging process and the materials and process model of the Al yoke is simulated using MatCalc simulation software. Finite element analysis method is used for designing of Al 6061-T6 propeller shaft. The forged Al yoke is solutionized at temperature 550°C for 1 hr followed by artificial ageing at temperature 180°C for 16 hrs to improve the hardness and strength of the yoke.
Technical Paper

Prediction of Tyre Dynamic Behaviour for NVH and its Experimental Validation in Anechoic Chamber

2021-09-22
2021-26-0303
In present scenario, tyre industry is more focused on providing maximum extent of NVH comfort to passengers by improvising the tyre design. Noise contribution from the tyres is classified in to three regions, viz., structure-borne (tyre vibrations), air-borne (tread pattern) and cavity noise (air cavity). In general, a Finite Element (FE) model of tyre provides an inherent advantage of analyzing tyre dynamic behavior. In this paper, an attempt was made to develop a three-dimensional FE tyre model and validate the same through experimental approach. The CAD Model of the tyre was generated through 3D image scanning process. Material property extraction of tyre was carried out by Universal Testing Machine (UTM) to generate Finite Element (FE) model. For validation of tyre FE model, Experimental Modal Analysis (EMA) and Noise Transfer Function (NTF) were conducted.
Technical Paper

Prediction of Thermal Comfort Inside a Midibus Passenger Cabin Using CFD and Its Experimental Validation

2015-01-14
2015-26-0210
This paper presents a methodology for predicting thermal comfort inside Midibus cabin with an objective to modify the Heating, Ventilation and Air Conditioning (HVAC) duct design and parametric optimization in order to have improved thermal comfort of occupant. For this purpose the bus cavity is extracted from baseline CAD model including fully seated manikins with various seating positions. Solar Load has been considered in the computational model and passenger heat load is considered as per BSR/ASHRAE 55-1992R standard. CFD simulation predicted the air temperature and velocity distribution inside passenger cabin of the baseline model. The experimental measurements have been carried out as per the guidelines set in APTA-BT-RP-003-07 standard. The results obtained from CFD and Experimental test were analysed as per EVS EN ISO7730 standard and calculated occupant comfort in terms of thermal comfort parameters like Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD).
Technical Paper

Performance Evaluation of EV/HEV Systems Using xEV Offline Simulator

2017-01-10
2017-26-0097
This paper introduces xEV Simulator- A MATLAB based simulator platform capable of analyzing EV/HEV powertrain system in both backward and forward modelling. xEV Simulator employs Forward Simulation for drive-cycle performance evaluations and Backward simulation for powertrain component sizing and support xEV powertrain design. The powertrain subsystems are modelled in Simulink. This enables the model based system simulation and further controller prototyping and HiL testing. xEV Offline Simulator GUI enables user to simulate standard EV/HEV configurations with standard drive-cycles. The model parameters of different component subsystems can be configured. The Backward modelling and simulation support the estimation of subsystem values like Propulsion motor, Energy storage, etc., to perform as per the drive-cycle requirement.
Technical Paper

Parametric Optimization for Biodiesel Production from Jatropha Curcus

2015-01-14
2015-26-0047
Biodiesel is an alternate fuel for diesel consisting of the alkyl monoester of fatty acids derived from vegetable oils. The most usual method to transform oil into biodiesel is transesterification which can be carried out using different catalyst. Jatropha is second generation oil which is non edible and can be use for producing biodiesel. The first part is to expel oil from jatropha seeds. There are different types of expelling methods such as mechanical extraction, solvent extraction and enzymatic extraction. The study was conducted with hand driven mechanical expeller which is most conventional way of extracting oil from seeds with mechanical efficiency of 60-80% for single pass. The study includes various combinations of parameters like seed treatment, sun drying, pre-heating, soaking at different temperatures and different de-hulling compositions.
Technical Paper

Optimization in Tube Yoke Forging Process using Computer Simulation

2017-01-10
2017-26-0238
New process development of forging component requires in-depth knowledge and experience related to the process. Also it requires number of physical trials to arrive at optimum process and initial billet dimensions. With the help of reliable computer simulation tool, it is possible to optimize the complete forging process and billet dimensions. Simulation provides much more insight about the process and possible forging defects. This saves considerable time and money. This paper describes about a complete forging process designed for a complex component. With the help of metal forming simulation software, complete forging process was simulated and optimized. Forging defects were removed during optimization of the process. Billet weight optimization was also carried out. Deciding the preforming shape of the billet was the main challenge. An innovative pre-forging shape was arrived which resulted in eliminating one process stage.
Technical Paper

Numerical Prediction of NOx in the Exhaust of a CI Engine Fuelled with Biodiesel Using In-Cylinder Combustion Pressure Based Variables

2016-02-01
2016-28-0153
Alternative fuels for both spark ignition (SI) and compression ignition (CI) engines have become very important owing to increased environmental protection concern, the need to reduce dependency on petroleum and even socioeconomic aspects. An appropriate sustainable fuel alternative has turn out to be a main concern and bio-diesel is one of the sustainable fuels. The path of interest in biodiesel has highlighted its advantages which include decrease in hydrocarbon and particulate matter. Meanwhile its shortcoming includes higher emission of oxides of nitrogen. This work is an attempt to develop a mathematical relationship to predict thermal NOx in CI engine fuelled with neat biodiesel. Attention was focused on using in-cylinder pressure based variables to predict NOx. In cylinder pressure measurement is a valuable tool for the analysis of CI engine combustion, which is used for finding the heat release rate, ignition delay, etc.
X