Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Taguchi’s Approach to Wire Electrical Discharge Machining of Magnesium Alloy AZ31B

2023-11-10
2023-28-0136
One of the most common types of lightweight materials used in aerospace is magnesium alloy. It has a high strength-to-weight ratio and is ideal for various applications. Due to its corrosion resistance, it is commonly used to manufacture of fuselages. Unfortunately, the conventional methods of metal cutting fail to improve the performance of magnesium alloy. One amongst the most common methods used for making intricate shapes in harder materials is through Wire-Electro-Discharge (WEDM). In this study, we have used magnesium alloy as the work material. The independent factors were selected as pulse duration and peak current. The output parameters of the process are the Surface Roughness (SR) and the Material Removal Rate (MRR). Through a single aspect optimization technique, Taguchi was able to identify the optimal combination that would improve the effectiveness of the WEDM process.
Technical Paper

Predictive Modelling and Process Parameter Prediction for Monel 400 Wire Electrical Discharge Machining for Rocket Frames

2023-11-10
2023-28-0088
Due to their inherent properties and superior performance over titanium-based materials, nickel-based superalloys are widely utilized in the manufacturing industry. Monel 400 is among them. This nickel-copper alloy possesses exceptional corrosion resistance and mechanical properties. Monel 400 is primarily utilized in the chemical industry, heat exchangers, and turbine component manufacturing. Due to the properties of Monel 400, it is deemed as hard to machine materials with the aid of conventional methods. For investigating the performance of this process, a three-level analysis was carried out. Pulse on duration and applied current at three levels are the independent parameters used for designing the experiments. In this present article, a single-response analysis technique is used which is known as Taguchi to investigate the impact of the various process parameters on the output variables.
Technical Paper

Machinability Studies and the Evolution of Hybrid Artificial Intelligent Tools for Advanced Machining of Nickel Alloy for Aerospace Applications

2023-11-10
2023-28-0065
Nickel-based superalloys are frequently adopted in various engineering applications, such as the production of food processing equipment, aerospace parts, and chemical processing equipment. Because of higher strength and thermal conductivity, they are often regarded as difficult-to-machine materials in certain processes. Various methods were evolved for machining the hard materials such as Nickel-based superalloys more effective. One of these is wire electrical discharge machining. In this paper, we will discuss the development of an artificial neural network model and an adaptive neuro-fuzzy inference system that can be used to predict the future performance of Wire Electrical Discharge Machining (WEDM). The paper uses the Taguchi and Analysis of Variance (ANOVA) design techniques to analyze the model’s variable input. It aims to simulate the various characteristics of the process and its predicted values.
Technical Paper

Investigations on Wire Electrical Discharge Machining of Magnesium Alloy for Automobile Parts

2023-11-10
2023-28-0155
Magnesium alloy, known for its high strength and lightweight properties, finds widespread utilization in various technical applications. Aerospace applications, such as fuselages and steering columns, are well-suited for their utilization. These materials are frequently employed in automotive components, such as steering wheels and fuel tank lids, due to their notable corrosion resistance. The performance of magnesium alloy components remains unimproved by normal manufacturing methods due to the inherent characteristics of the material. This work introduces a contemporary approach to fabricating complex geometries through the utilization of Wire-Electro Discharge Machining (WEDM). The material utilized in this study was magnesium alloy. The investigation also considered the input parameters associated with the Wire Electrical Discharge Machining (WEDM) process, specifically the pulse duration and peak current.
Technical Paper

Investigational Analysis on Wire Electrical Discharge Machining of Aluminium Based Composites by Taguchi’s Method

2023-11-10
2023-28-0075
A wide range of engineering domains, such as aeronautical, automobiles, and marine, rely on the use of Metal Matrix Composites (MMC). Due to the excellent properties, such as hardness and strength, Aluminum base MMC are generally adopted in various uses. Due to the increasing number of reinforcement materials being added to the MMC, its properties are expected to improve. In this exploratory analysis, an effort was given to develop a new aluminium-based MMC. The analysis of the machinability of the composite was also performed. The process of creating a new MMC using a stir casting technique was carried out. It resulted in a better and more reinforced composite than its base materials. The reinforcement materials were fabricated using different weight combinations and process parameters, such as the temperature and duration required to stir. Due to the improved properties of the composite, the traditional machining method is not feasible for machining of these materials.
Technical Paper

Investigation on Thermophysical Characterization of Nano Composite Phase Change Materials for Battery Cooling in EV

2022-11-09
2022-28-0420
Nano Enhanced Phase Change Material (PCM) is proposed as Battery Thermal Management System. by nature, the pure paraffin has low thermal conductivity and sub-cooling characteristics. In order to increase the thermal conductivity of PCM, thermal conductive substance such as nanoparticles are added to PCM, SiO2 nanoparticles were dispersed into paraffin wax tosynthesisSiO2 –PCM nanocomposites. The chemical, physical and thermal properties of CPCMs were determined by various material characteristic techniques. The TGA and DTG results show that all CPCMs have good thermal and chemical stability. With the addition of SiO2 improved the thermal and chemical stability of pure paraffin The latent–heat of fusion was decreased with increasing the loading of SiO2 and also the thermal conductivities of CPCM increased.
Technical Paper

Investigation on Design and Analysis of Passenger Car Body Crash-Worthiness in Frontal Impact Using Radioss

2020-09-25
2020-28-0498
Increasing advancement in automotive technologies ensures that many more lightweight metals become added to the automotive components for the purpose of light weighting and passenger safety. The accidents are unexpected incidents most drivers cannot be avoided that trouble situation. Crash studies are among the most essential methods for enhancing automobile safety features. Crash simulations are attempting to replicate the circumstances of the initial crash. Frontal crashes are responsible for occupant injuries and fatalities 42% of accidents occur on frontal crash. This paper aims at studying the frontal collision of a passenger car frame for frontal crashes based on numerical simulation of a 35 MPH. The structure has been designed to replicate a frontal collision into some kind of inflexible shield at a speed of 15.6 m/s (56 km/h). The vehicle’s exterior body is designed by CATIA V5 R20 along with two material properties to our design.
Technical Paper

Influence of Recycled Scrap Particles on Tensile Behavior of Additively Manufactured Polylactic Acid (PLA) Composites for Automotive Upholstery Applications

2024-02-23
2023-01-5151
In the domain of Additive Manufacturing (AM), Fused Filament Fabrication (FFF) hath flourished as a promising method for crafting complex geometric parts with a commendable degree of dimensional precision. The perception of recycling metal scrap particles obtained from machining operations unbound the scope of developing sustainable layered polymer composites with integral properties of metal particles. In this context, the present work is intended to investigate the tensile properties of Polylactic Acid (PLA), strengthened with fine particles of bronze scrap particles as reinforcement fabricated by FFF-based additive manufacturing technique. The composite specimens are manufactured as per ASTM standard with different combinations of build orientation, infill pattern, and no. of reinforcement layers.
Technical Paper

Experimental Investigation on the Tensile and Wear Characteristics of Journal Bearing Materials Used in Automobile Engine Application

2022-12-23
2022-28-0518
The objective of the bearing materials is to reduce the friction and enhance the movement between two parts. The main aim of our project is to focus on the wear, tensile and fatigue characteristics of engine journal bearing material. The engine bearings are mainly classified into main bearings and journal bearings. The journal bearing material was made by cladding process. It is formed in two types of shape one is circular and the other is on dog bone shape. Both of the specimens were made as per ASTM standards. The material on which the test specimen was made on steel platted copper material and Aluminium 1020. The circular shape specimen was subjected to wear test on Pin on Disc method and the wear calculations were calculated in microns. The dog bone shape specimen was tested on tensile strength on Universal Testing Machine (UTM). The stress strain curve was obtained. The specimen will subject to fatigue test by using of fatigue test machines.
Journal Article

Establishment of Defect Free Weldment Parameters for Higher Productivity in Flash Butt Welding Machine

2020-09-25
2020-28-0410
In this work, Flash butt welding process was completely studied and the parameters for improvement of productivity were established with the help of flash butt welding machine. This work tries to confirm that an exploratory type of research is mostly preferred and analysis has to be done to achieve the end output. Quality affirmation and cost of value are the two significant variables that influence the efficiency of flash butt welding. To accomplish excellent quality and less cost of value different components that impact the welded joint and procedure are considered and comprehended. As commitment towards this point, an examination was done in the flash butt welding system. One of the fundamental goal of this investigation was to build up the imperfection free parameters. This was done initially by studying the different defects that occur in flash butt welded joints.
Technical Paper

Emission and Tribological Studies on Nano CuO/Jatropha Methyl Ester/Synthetic Mineral Oil in a Two-Stroke Engine

2019-10-11
2019-28-0095
In lieu of the drastic growth of the vehicle population, there is a huge consumption of fossil fuels and mineral oils for mobility. This leads to depletion in fossil fuels and mineral oils which are the by-products of petroleum. These fossil fuels can’t sustain for a long period of time because of its toxicity. In order to reduce the usage of existing mineral oil for lubrication, a source of non-edible oil from Jatropha curcus is processed as jatropha methyl ester (JME). It is holding high viscosity, density and easy blend with base oil. In this current work, the wear resistance of the lubricating oil is enhanced by the addition of nano-copper oxide particle blend with the base oil. The emission performance and tribological behavior have been experimentally tested in 98.2CC two-stroke air cooled engine. The 20% of JME blend with CuO nano particle provides better emission performance and wear characteristics than the other combination of blends.
Technical Paper

Corrosion Characteristics on Friction Stir Welding of Dissimilar AA2014/AA6061 Alloy for Automobile Application

2019-10-11
2019-28-0063
Friction Stir Welding (FSW) is a widely used solid state welding process in which its heats metal to the below recrystallization temperature due to frictional force. FSW mostly avoids welding defects like hot cracking and porosity which are mainly occur in conventional welding techniques. In this process the combination of frictional force and the mechanical work provide heating the base metal to get defect free weld joints. Aluminium Alloys 2014 and 6061 are generally used in a wide range of automobile applications like Engine valves and tie rod, shipbuilding, and aerospace due to their high corrosion resistance, lightweight, and good mechanical properties. In the present work, aluminium alloys of AA6061 and AA2014 were effectively welded by friction stir welding technique. The tool rotational speed, travel speed, and tool profile are the important parameters in FSW process. High Speed Steel (HSS) tool with Hexagonal profile is used for this joining.
Technical Paper

Application of Taguchi Based ANFIS Approach in Wire Electrical Discharge Machining of Inconel 625 for Automobile Applications

2023-11-10
2023-28-0148
Nickel-based superalloys are most commonly engaged in a numerous engineering use, including the making of food processing equipment, aerospace components, and chemical processing equipment. These materials are often regarded as difficult-to-machine materials in conventional machining approach due to their higher strength and thermal conductivity. Various methods for more effective machining of hard materials such as nickel-based superalloys have been developed. Wire electrical discharge machining is one of them. In this paper, an effect has been taken to develop an adaptive neuro-fuzzy inference system for predicting WEDM performance in the future. To analyse the model’s variable input, the paper employs the Taguchi’s design and analysis techniques. The evolved ANFIS model aims to simulate the process’s various characteristics and predicted values. A comparison of the two was then made, and it was discovered that the predicted values are much closer to the actual outcomes.
Technical Paper

An Investigation on Corrosion and Wear Behavior of Automotive Materials

2021-10-01
2021-28-0238
The energy demand of the world is keep increasing, major share of the demand is compensated by non-renewable fossil fuels. Automotive sector consumes a huge amount of fossil fuels, as majority of the segment use internal combustion as a prime mover. In the present era researches are carried to figure out the suitable replacements for fossil fuels to attain sustainable environment. One of the major challenge and keen interest of everyone is on waste management, several researches are aimed to bridge the gap between energy demand and waste management. In such way biofuels came into limelight a decade ago, still numerous works are carried in the area for creating socio economic friendly environment. Enormous studies have been carried out to assess their performance in the internal combustion engines, here in the present study performance of the working material against the biodiesel is studied.
X