Refine Your Search

Topic

Author

Search Results

Technical Paper

Volume Morphing to Compensate Stamping Springback

2009-04-20
2009-01-0982
A common occurrence in computer aided design is the need to make changes to an existing CAD model to compensate for shape changes which occur during a manufacturing process. For instance, finite element analysis of die forming or die tryout results may indicate that a stamped panel springs back after the press line operation so that the final shape is different from nominal shape. Springback may be corrected by redesigning the die face so that the stamped panel springs back to the nominal shape. When done manually, this redesign process is often time consuming and expensive. This article presents a computer program, FESHAPE, that reshapes the CAD or finite element mesh models automatically. The method is based on the technique of volume morphing pioneered by Sederberg and Parry [Sederberg 1986] and refined in [Sarraga 2004]. Volume morphing reshapes regions of surfaces or meshes by reshaping volumes containing those regions.
Technical Paper

Virtual Manufacturing of Automotive Body Side Outers Using Advanced Line Die Forming Simulation

2007-04-16
2007-01-1688
As a virtual manufacturing press line, line die forming simulation provides a full range math-based engineering tool for stamping die developments of automotive structure and closure panels. Much beyond draw-die-only formability analysis that has been widely used in stamping simulation community during the last decade, the line die formability analysis allows incorporating more manufacturing requirements and resolving more potential failures before die construction and press tryout. Representing the most difficult level in formability analysis, conducting line die formability analysis of automotive body side outers exemplifies the greatest technological challenge to stamping CAE community. This paper discusses some critical issues in line die analysis of the body side outers, describes technical challenges in applications, and finally demonstrates the impact of line die forming simulation on the die development.
Technical Paper

Vehicle Dash Mat SEA Modeling and Correlation

2007-05-15
2007-01-2310
The dash mat is one of the most important acoustic components in the vehicle for both powertrain noise and road noise attenuation. To optimize acoustic performance and mass requirements in the advanced development stage, analytical modeling is essential. The development of a detailed Statistical Energy Analysis (SEA) model of a dash mat is discussed in this paper. Modeling techniques and correlation with test are presented for two different production dash mat designs, a barrier-decoupler conventional system and a dual layer dissipative system without a mass barrier. The material properties and thickness distribution are used in the SEA model together with the geometry information of the dash panel. With the SEA model suitably correlated, trade-off studies are conducted to investigate the relationship between mass reduction of the barrier and change in decoupler thickness. The effects of air gaps are also considered in both modeling and testing.
Technical Paper

The Importance of Sealing Pass-Through Locations Via the Front of Dash Barrier Assembly

1999-05-17
1999-01-1802
An improvement in a vehicle's front of dash barrier assembly's acoustical performance has in the past been addressed by both adding individual absorbers and increasing the overall weight of the dash sound barrier assembly. Depending upon the target market of the vehicle, adding mass may not be an option for improved acoustical performance. Understanding the value of an increase in vehicle mass and / or cost for a specific level of improved acoustical performance continues to plague both Original Equipment Manufacturer (OEM) Engineers and Purchasing representatives. This paper examines the importance of properly sealing the front of dash pass-through areas and offers recommendations which can improve the overall vehicle acoustical performance without the addition of cost and mass to the vehicle.
Technical Paper

The Effects of Friction on Bursting of Tubes in Corner Filling

2003-03-03
2003-01-0688
Corner filling is a benchmark experiment in tube hydroforming. It was designed to gain knowledge pertinent of this new fabrication process. The corner filling benchmark has been widely used in the automotive and steel industries. Common sense as well as physical tests suggests that friction is an important parameter that affects the deformation of the tube and the bursting of the tubes. However, numerical simulations have yet to verify this fact. In this paper, the stress/strain states in the tube were computed using a finite element model. The dependence of bursting on friction for corner filling was estimated by using the forming limit diagram and a tensile-based failure criterion.
Technical Paper

Tensile Deformation and Fracture of Press Hardened Boron Steel using Digital Image Correlation

2007-04-16
2007-01-0790
Tensile measurements and fracture surface analysis of low carbon heat-treated boron steel are reported. Tensile coupons were quasi-statically deformed to fracture in a miniature tensile testing stage with custom data acquisition software. Strain contours were computed via a digital image correlation method that allowed placement of a digital strain gage in the necking region. True stress-true strain data corresponding to the standard tensile testing method are presented for comparison with previous measurements. Fracture surfaces were examined using scanning electron microscopy and the deformation mechanisms were identified.
Journal Article

Superelement, Component Mode Synthesis, and Automated Multilevel Substructuring for Rapid Vehicle Development

2008-04-14
2008-01-0287
This paper presents the new techniques/methods being used for the rapid vehicle development and system level performance assessment. It consists of two parts: the first part presents the automated multilevel substructuring (AMLS) technique, which greatly reduces the computational demands of larger finite element models with millions of degrees of freedom(DOF) and extends the capabilities to higher frequencies and higher level of accuracy; the second part is on the superelement in conjunction with the Component Mode Synthesis (CMS) and also Automated Component Mode Synthesis (ACMS) techniques. In superelement, a full vehicle model is divided into components such as Body-in-white, Front cradle/chassis, Rear cradle/chassis, Exhaust, Engine, Transmission, Driveline, Front suspension, Rear suspension, Brake, Seats, Instrument panel, Steering system, tires, etc. with each piece represented by reduced stiffness, mass, and damping matrices.
Technical Paper

Stretch-Bend Forming Limits of 1008 AK Steel

2003-03-03
2003-01-1157
A series of tests were performed to determine the influence of curvature on the forming limits of 1008 AK steel. Rectangular blanks cut from three thicknesses of the material from 0.69 mm to 1.04 mm were securely clamped at opposite edges and stretched over wedge shaped punches of different radii. A series of punches were used with radii that varied from 0.508 mm to 12.7 mm to produce bending effects that range from severe to mild. Measurements show that the neck forms on the convex surface when the strain on the concave side of the sheet reaches a value consistent with the forming limit in plane-strain for in-plane deformation.
Technical Paper

Static Load Sharing Characteristics of Transmission Planetary Gear Sets: Model and Experiment

1999-03-01
1999-01-1050
One of the most common applications of planetary (epi-cyclic) gear sets is found in automotive transmissions. A planetary gear set typically total torque applied to be shared by multiple planets making a higher power density possible. This advantage of the planetary gear sets relies heavily on the assumption that each pinion carries an equal share of the total torque applied. However, in production, gear manufacturing and assembly variations along with certain design parameters may prevent equal load sharing among the planets. Here, a generalized mathematical model of a single-stage planetary gear set having n planets is developed to predict load shared by each planet under quasi-static conditions. The model takes into account effects of two most common errors including pinion carrier errors and gear run-out errors. Results of an experimental test program are used to validate the predictions of the model. Generalized guidelines for equal load sharing are also presented.
Technical Paper

Simulation Based Development of Quick Plastic Forming

2005-04-11
2005-01-0088
A computer assisted development technique for Quick Plastic Forming parts [1] is described, based on the simulation program PAM-STAMP [2]. The technique allows thickness changes during forming to be accurately considered in the development process without physical trials. Process pressure cycles, which provide for maximal material formability, can be determined with a single simulation. The paper describes new program features, which reduce modeling effort and increase simulation accuracy. Various validation examples and industrial case studies are also presented, demonstrating current capabilities.
Technical Paper

Robust Analysis of Clamp Load Loss in Aluminum Threads due to Thermal Cycling

2009-04-20
2009-01-0989
A DFSS study identified a new mechanism for clamp load loss in aluminum threads due to thermal cycling. In bolted joints tightened to yield, the difference in thermal expansion between the aluminum and steel threads can result in a loss of clamp load with each thermal cycle. This clamp load loss is significantly greater than the loss that can be explained by creep alone. A math model was created and used to conduct a robust analysis. This analysis led to an understanding of the design factors necessary to reduce the cyclic clamp load loss in the aluminum threads. This understanding was then used to create optimized design solutions that satisfy constraints common to powertrain applications. Estimations of clamp load loss due to thermal cycling from the math model will be presented. The estimates of the model will be compared to observed physical test data. A robust analysis, including S/N and mean effect summary will be presented.
Technical Paper

Residual Forming Effects on Full Vehicle Frontal Impact and Body-in-White Durability Analyses

2002-03-04
2002-01-0640
Forming of sheet metal structures induces pre-strains, thickness variations, and residual stresses. Pre-strains in the formed structures introduce work hardening effects and change material fatigue properties such as stress-life or strain-life. In the past, crashworthiness and durability analyses have been carried out using uniform sheet thickness and stress- and strain-free initial conditions. In this paper, crashworthiness and durability analyses of hydroformed front rails, stamped engine rails and shock towers on a full vehicle and a Body-In-White structure are performed considering the residual forming effects. The forming effects on the crash performance and fatigue life are evaluated.
Technical Paper

Quasi-Static and Impact Strength of Fatigue Damaged Spot Welds

2003-03-03
2003-01-0610
As the automotive industry becomes more concerned with the crash performance of automobiles, the behavior of used vehicles becomes an interesting subject. In this work, the effect of aging on spot welded joints was simulated by applying fatigue loading to the samples. Samples were then subjected to quasi-static and impact tests to measure the effect of fatigue aging to the strength of the samples. The results show (a) a reduction in the strength of the test samples under impact conditions, (b) no obvious reduction in quasi-static conditions, and (c) significant reduction in strength if cracks in the welds were initiated during the fatigue aging process.
Technical Paper

Prestrain Effect on Fatigue of DP600 Sheet Steel

2007-04-16
2007-01-0995
The component being formed experiences some type of prestrain that may have an effect on its fatigue strength. This study investigated the forming effects on material fatigue strength of dual phase sheet steel (DP600) subjected to various uniaxial prestrains. In the as-received condition, DP600 specimens were tested for tensile properties to determine the prestraining level based on the uniform elongation corresponding to the maximum strength of DP600 on the stress-strain curve. Three different levels of prestrain at 90%, 70% and 50% of the uniform elongation were applied to uniaxial prestrain specimens for tensile tests and fatigue tests. Fatigue tests were conducted with strain controlled to obtain fatigue properties and compare them with the as-received DP600. The fatigue test results were presented with strain amplitude and Neuber's factor.
Technical Paper

Power-Based Noise Reduction Concept and Measurement Techniques

2005-05-16
2005-01-2401
This paper presents a Power-Based Noise Reduction (PBNR) concept and uses PBNR to set vehicle acoustic specifications for sound package design. This paper starts with the PBNR definition and describes the correct measurement techniques. This paper also derives the asymptotic relationships among PBNR, conventional noise reduction (NR), and sound transmission loss, for a simple case consisting of the source, path, and receiver subsystems. The advantages of using PBNR over conventional Noise Reduction (NR) are finally demonstrated in vehicle measurement examples.
Technical Paper

Pitch Intervals: Linking Sound Quality Engineering and Musical Acoustics

2003-05-05
2003-01-1503
One task of sound quality engineering is to find of links between engineering measures and human perceptions of sound. Over the years, several papers have been presented at SAE N&V conferences concerning the sound quality of electrical motor sounds in automotive applications. Many papers have focused on the variation in motor speed during system operation. While some papers have suggested that a useful measure for slow variations is fluctuation strength, other papers suggest measures for dealing with non-periodic variations or the general trend in motor speed. Both sets of papers tend to describe the changes in terms of percentage of a statistic of the motor speed. While percentage is a useful engineering approach, it may not be the best way to relate how the changes will be perceived by a human listener. The alternate approach described here offers formulae, in units of scale-steps or cents, to describe the changes based on the link between engineering measures and music.
Technical Paper

Optimum Design of Hood Ajar Switch For Quality

2006-04-03
2006-01-0735
The Hood ajar sensing system provides customer feedback regarding the latch positional state of hood. If the sensing system is not robust to variation due to manufacturing, thermal conditions, and assembly, diagnostic failures can result. Executing various elements of the design for six sigma process can reduce the potential for diagnostic failures. This paper presents a method for achieving quality improvements by developing transfer functions, and using them for sensitivity and variance analysis. Control parameters were optimized to minimize non-conformal situations in the presence of various noise conditions.
Technical Paper

Modeling Costs and Fuel Economy Benefits of Lightweighting Vehicle Closure Panels

2008-04-14
2008-01-0370
This paper illustrates a methodology in which complete material-manufacturing process cases for closure panels, reinforcements, and assembly are modeled and compared in order to identify the preferred option for a lightweight closure design. First, process-based cost models are used to predict the cost of lightweighting the closure set of a sample midsized sports utility vehicle (SUV) via material and process substitution. Weight savings are then analyzed using a powertrain simulation to understand the impact of lightweighting on fuel economy. The results are evaluated in the context of production volume and total mass change.
Technical Paper

Local Mechanical Property Variations of AZ31B Magnesium Sheet due to Elevated Temperature Forming

2009-04-20
2009-01-0864
The influence of elevated temperature forming on local mechanical properties of AZ31B magnesium (Mg) sheet material was investigated. The Mg sheet was formed into a closure component with high temperature gas pressure at 485°C. Miniature tensile testing specimens were cut from selected areas of the component where different levels of thinning occurred. The specimens were strained in tension to fracture using a miniature tensile stage. The two-dimensional strain distribution in the necking region along with true stress-true strain curves were computed using a digital image correlation technique to assess the influence of the forming-induced thinning on tensile strength and percent elongation at fracture.
Technical Paper

Integrating Metal Forming With Other Performance Analyses Using a Mapping Strategy

2005-04-11
2005-01-0357
Sheet metal forming processes change the material properties due to work hardening (or softening) in the thickness direction as well as throughout the entire part. At the same time, uneven thickness distribution, mostly thinning, occurs as the result of forming. This is true for all commonly used sheet metal forming processes including stamping (deep drawing), tube hydroforming, sheet hydroforming and super plastic forming. The effects from forming can sometimes strongly influence the structural performance. Though the CAE analysts have been trying to consider forming effect in their models for performance simulations, there was no easy way to do it consistently and reliably. Some analysts have been trying to modify the initial gage or yield strength to compensate for the property change due to forming. Replace the model with the formed panel is not feasible due to the mesh density difference.
X