Refine Your Search

Topic

Search Results

Technical Paper

The Effect of In-Cylinder Temperature on the Ignition Initiation Location of a Pre-Chamber Generated Hot Turbulent Jet

2018-04-03
2018-01-0184
Ignition location is one of the important factors that affect the thermal efficiency, exhaust emissions and knock sensitivity in premixed-charge ignition engines. However, the ignition initiation locations of pre-chamber generated turbulent jet ignition, which is a promising ignition enhancement method, are not clearly understood due to the complex physics behind it. Motivated by this, the ignition initiation location of a transient turbulent jet in a constant volume combustor is analyzed by the use of computational fluid dynamics (CFD) simulations. In the CFD simulations of this work, commercial codes KIVA-3 V release 2 and an in-house-developed chemical solver with a detailed mechanism for H2/air mixtures are used. Comparisons are performed between simulated and experimental ignition initiation locations, and they agree well with one another. A detailed parametric study of the influence of in-cylinder temperature on the ignition initiation location is also performed.
Technical Paper

The Application of Solid Selective Catalytic Reduction on Heavy-Duty Diesel Engine

2017-10-08
2017-01-2364
Urea SCR technology is the most promising technique to reduce NOx emissions from heavy duty diesel engines. 32.5wt% aqueous urea solution is widely used as ammonia storage species for the urea SCR process. The thermolysis and hydrolysis of urea produces reducing agent ammonia and reduces NOx emissions to nitrogen and water. However, the application of urea SCR technology has many challenges at low temperature conditions, such as deposits formation in the exhaust pipe, lack deNOx performance at low temperature and freezing below -12°C. For preventing deposits formation, aqueous urea solution is hardly injected into exhaust gas stream at temperature below 200°C. The aqueous urea solution used as reducing agent precursor is the main obstacle for achieving high deNOx performances at low temperature conditions. This paper presents a solid SCR technology for control NOx emissions from heavy duty diesel engines.
Journal Article

Study on Hydrodynamic Torque Converter Parameter Integrated Optimization Design System Based on Tri-Dimensional Flow Field Theory

2008-06-23
2008-01-1525
Hydrodynamic torque converter parameter integrated optimization design system is established based on tri-dimensional flow field theory. Design segments such as optimization initial values searching by meanline theory, cascade solid modeling, structure mesh of flow passage, CFD(computational fluid dynamics), DOE(design of experiment), RSM(response surface model)and optimization algorithm are integrated in this system and therefore a three dimensional optimization design method for hydrodynamic torque converter is presented and realized. An optimization design instance is accomplished by workstation computer cluster, and its result shows that speed and accuracy of design are improved and design system based on 3D flow field theory is accurate and effective.
Technical Paper

Studies on Anti-Slip Regulation Technologies for AMT Vehicles

2007-04-16
2007-01-1314
In order to improve the tractive ability, steering capability and directional stability, etc. of automated mechanical transmission (AMT) vehicles running on the wet and slippery road, the anti-slip regulation (ASR) technologies for AMT vehicles are developed. The significance of ASR for AMT vehicles is introduced; a road friction recognition method based on the deceleration of driving wheels is investigated; a fuzzy anti-slip control system based on adjustment of engine torque is developed and the corresponding experimental verification is conducted. The experimental results denote that the proposed method is effective to eliminate the excessive slip when the AMT vehicle travels on the low friction road.
Technical Paper

Soot and PAH Formation Characteristics of Methanol-Gasoline Belnds in Laminar Coflow Diffusion Flames

2018-04-03
2018-01-0357
Particulate matter emissions are becoming a big issue for GDI engines as the emission regulations being more stringent. Methanol has been considered to be an important alternative fuel to reduce soot emissions. To understand the effect of methanol addition on soot and polycyclic aromatic hydrocarbons (PAHs) formation, the 2-D distributions of soot volume fraction and different size PAHs relative concentrations in methanol/gasoline laminar diffusion flames were measured by TC-LII and PLIF techniques. The effect of methanol was investigated under the conditions of the same carbon flow and the same flame height. The methanol volume fraction was set as M0/20/40/60/80. The results showed that the natural luminescent flame lift-off height and soot lift-off height increases consistently with the increasing methanol content due to the increase of outlet velocity of fuel vapor.
Technical Paper

Research on the Cylinder-by-cylinder Variations Detection and Control Algorithm of Diesel Engine

2015-04-14
2015-01-1644
The cylinder-by-cylinder variations have many bad impacts on the engine performance, such as increasing the engine speed fluctuation, enlarging the torsional vibration and noise. To deal with this problem, the impact mechanism of cylinder-by-cylinder variations on low order torsional vibration has been studied in this paper, and subsequently a new individual cylinder control strategy was designed by processing the instantaneous crankshaft rotation speed signal, detecting the cylinder-by-cylinder variation and using feed-back control. The acceleration characteristics of each cylinder in each engine cycle were compared with each other to extract the variation index. The feed-back control algorithm was based on the regulation of the fuel injection according to the detected variation level.
Technical Paper

Research on Temperature Stability of an Independent Energy Supply Device with Organic Rankine Cycles Based on Hydraulic Retarder

2017-09-22
2017-01-7003
Hydraulic retarder, as an auxiliary braking device, is widely used in commercial vehicles. Nowadays, the hydraulic retarder’s internal oil is mainly cooled by the coolant circuit directly. It not only aggravates the load of engine cooling system, but also makes the abundant heat energy not be recycled properly. In this study, an independent energy supply device with organic Rankine cycles is applied to solve the problems above. In the structure of this energy supply device, the evaporator’s inlet and outlet is connected in parallel with the oil outlet and inlet of the retarder respectively. A part of oil enters the evaporator to transfer heat with the organic fluid, and the rest of oil enters the oil-water heat exchanger to be cooled by the coolant circuit. According to the different braking conditions of the retarder, the oil temperature in the inlet of the hydraulic retarder can be kept within the proper range through adjusting the oil flow rate into the evaporator properly.
Technical Paper

Research on Manual Transmission Rattle Noise Experiment Technique

2021-04-06
2021-01-0702
Gear rattle noise is one of the important characteristics of manual and dual-clutch transmission,it is generated by the impact of unloaded meshing gear pairs in the transmission due to engine torsional vibration. Based on a front-drive manual transmission and a five dynos drivetrain NVH test bench with high-speed sine wave generator function, this paper designs an experimental program suitable for transmission rattle noise. By driving dynamometer to simulate the torque fluctuation of real engine, the main research is to study the characteristics of the transmission rattle noise under different excitation amplitudes and different excitation frequencies, and the sensitivity of rattle noise under different gears, different oil temperatures, different excitation amplitudes and excitation frequencies is analyzed. Finally, the transmission maps of rattle noise in different gears can be obtained.
Technical Paper

Research on Control Strategy of Shifting Progress

2008-06-23
2008-01-1684
Based on BF6M1015CP electronic diesel engine (it is a supercharged, water-cooled engine. It has 6 cylinders and it is for heavy-duty vehicle) and HD4070PR electronic automatic transmission (it covers heavy-duty applications requiring high input horsepower and torque. It contains torque converter module, control module, planetary module and output module. It has 7 forward gears and a power-take -off (PTO) and a retarder), the paper analyzes the shift system of an electronic automatic transmission and sets up a mathematic module of the shifting process. With the model the shifting process is analyzed and the model can be used directly in shifting process control, and the rules of shifting process can be derived. To improve the shift quality, in the paper the different control methods in different phases are used and reviewed that Include the open-loop control, fixed ramp rate, and closed-loop control.
Technical Paper

Regulated, Carbonyl Emissions and Particulate Matter from a Dual-Fuel Passenger Car Burning Neat Methanol and Gasoline

2015-04-14
2015-01-1082
As a probable solution to both energy and environmental crisis, methanol and methanol gasoline have been used as gasoline surrogates in several provinces of China. Most recently, the Ministry of Environmental Protection of China is drafting a special emission standard for methanol-fueled light-duty vehicles. Given the scarcity of available data, this paper evaluated regulated emissions, carbonyl compounds and particulate matter from a China-5 certificated gasoline/methanol dual-fuel vehicle over New European Driving Cycle (NEDC). The results elucidated that in context with gasoline mode, CO emitted in methanol mode decreased 11.2%, while no evident changes of THC and NOx emissions were noticed with different fueling regimes. The total carbonyls and formaldehyde have increased by 39.5% and 19.8% respectively after switching from gasoline to methanol. A remarkable decrease of 65.6% in particulate matter was observed in methanol mode.
Technical Paper

Regulated and Unregulated Emissions from a Spark Ignition Engine Fueled with Acetone-Butanol-Ethanol (ABE)-Gasoline Blends

2017-10-08
2017-01-2328
Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
Technical Paper

Proceedings of Real Driving Emission (RDE) Measurement in China

2018-04-03
2018-01-0653
Light-duty China-6, which is among the most stringent vehicle exhaust emission standards globally, mandates the monitoring and reporting of real driving emissions (RDE) from July, 2023. In the process of regulation promulgation and verification, more than 300 RDE tests have been performed on over 50 China-5 and China-6 certified models. This technical paper endeavors to summarize the experience of RDE practice in China, and discuss the impacts of some boundary conditions (including vehicle dynamic parameters, data processing methods, hybrid propulsion and testing altitude) on the result of RDE measurement. In general, gasoline passenger cars confront few challenges to meet the upcoming RDE NOx requirement, but some China-5 certified samples, even powered by naturally-aspirated engines may have PN issues. PN emissions from some GDI-hybrid powertrain systems also need further reduction to meet China-6 RDE requirements.
Technical Paper

NVH Improvement of Vehicle Powertrain

2012-09-24
2012-01-2007
This paper provides an investigation to improve vehicle powertrain NVH performance via modification of excitation and radiation system of powertrain. First of all, considering different excitation mechanisms of the powertrain, the excitation forces are analyzed. The FEM/BEM coupled analysis and the acoustic transfer vector (ATV) calculation as well as panel contribution analysis are applied to investigating the acoustic characteristics of the powertrain. Then a hybrid approach which couples the transmission gear profile modification for attenuating gear system excitation and the transmission housing modification for reducing transmission housing noise radiation is proposed to improve powertrain NVH performance. Experiment validation is conducted in order to assess the modified results. The assessment shows that this hybrid approach can effectively predict and reduce powertrain noise and vibration.
Technical Paper

Life Prediction of Shift Valve for Wet Shift Clutch under Abrasive Wear

2015-04-14
2015-01-0682
In the present paper a degradation assessment and life prediction method has been proposed for electro-hydraulic shift valve applied to control wet shift clutch in Power-shift steering transmission (PSST). Unlike traditional analysis of contaminant sensitivity, our work is motivated by the failure mechanisms of abrasive wear with a mathematic model. Plowing process included in abrasion will consecutively increase the roughness of mating surfaces and thereby enlarge the clearance space for leaking more fluid. It is an overwhelming wear mechanism in the degradation of shift valve within serious-contaminated fluid. Herein a mathematic model for assessment and prediction is proposed by considering particle morphology and abrasion theory. Such model has been verified for its applicability and accuracy through comparison between theoretical and experimental results. Assuming the proposed model to be general, valve wearing behavior in any hydraulic system can be simulated.
Technical Paper

Fluid-Solid Coupled Heat Transfer Investigation of Wet Clutches

2017-10-08
2017-01-2442
The prediction of temperature distribution and variation of oil-cooled sliding disk pair is essential for the design of wet clutches and brakes in a vehicle transmission system. A two-phase coupled heat transfer model is established in the study and some fluid-solid coupled heat transfer simulations are performed to investigate the thermal behaviors of wet clutch during sliding by CFD method. Both cooling liquid and grooved solid disks are contained in the heat transfer model and the heat convection due to the cooling liquid in the radial grooves is also considered by fluid-solid coupled transient heat transfer simulations. The temperature distribution and variation of the grooved disk are discussed and analyzed in detail. The results indicate that the temperature distribution on the grooved disk is nonuniform. The temperature within the middle radius area is higher than that in the inner and outer radius area.
Technical Paper

Experimental Study on the Effects of Intake Parameters on Diesel LTC Combustion and Emission

2017-10-08
2017-01-2259
The diesel low temperature combustion (LTC) can keep high efficiency and produce low emission. Which has been widely studied at home and abroad in recent years. The combustion control parameters, such as injection pressure, injection timing, intake oxygen concentration, intake pressure, intake temperature and so on, have an important influence on the combustion and emission of diesel LTC. Therefore, to realize different combustion modes and combustion mode switch of diesel engine, it is necessary to accurately control the injection parameters and intake parameters of diesel engine. In this work, experimental study has been carried out to analyze the effect of intake oxygen concentration, intake pressure and intake temperature in combustion and emission characteristics of diesel LTC, such as in-cylinder pressure, temperature, heat release rate, NOx and soot emission.
Technical Paper

Experimental Study of B20 Combustion and Emission Characteristics under Several EGR Conditions

2015-04-14
2015-01-1078
It is found that biodiesel has a great potential to reduce the nitrogen oxides (NOx) and soot emissions simultaneously in low temperature combustion (LTC) mode. The objective of this study is to investigate the combustion and emission characteristics of 20% biodiesel blend diesel fuel (B20) under several exhaust gas recirculation (EGR) conditions for LTC application. An experimental investigation of B20 was conducted on a four-stroke common rail direct injection diesel engine at 2000rpm and 25% load condition. The EGR ratio was adjusted from 10% to 66%, and the injection pressure was tuned from 100MPa to 140MPa. The result showed that B20 generated less soot emission than conventional diesel with increasing EGR ratio, especially when the EGR ratio was beyond 30%. Soot emission increased with increasing EGR ratio up to 50% EGR, after which there is a steep decrease in particular matter (PM).
Technical Paper

Estimating Ozone Potential of Pipe-out Emissions from Euro-3 to Euro-5 Passenger Cars Fueled with Gasoline, Alcohol-Gasoline, Methanol and Compressed Natural Gas

2016-04-05
2016-01-1009
Along with the booming expansion of private car preservation, many Chinese cities are now struggling with hazy weather and ground-level ozone contamination. Although central government has stepped up efforts to purify skies above China, counter-strategies to curb ground-level ozone is comparatively weak. By using maximum incremental reactivity (MIR) method, this paper estimated the ozone forming potential for twenty-five Euro-3 to Euro-5 passenger cars burning conventional gasoline, methanol-gasoline, ethanol-gasoline, neat methanol and compressed natural gas (CNG). The results showed that, for all the fuel tested, VOC/NOx ratios and SR values decreased with the upgrading of emission standard. Except for Euro-3 M100 and Euro-4 M85, SR values for alternative fuel were to different degrees smaller than those for gasoline. When the emission standard was shifted from Euro-4 to Euro-5, OFP values estimated for gasoline vehicle decreased.
Technical Paper

Effects of Electrically Heated Catalyst on the Low Temperature Performance of Vanadium-Based SCR Catalyst on Diesel Engine

2014-04-01
2014-01-1527
The NOx conversion efficiency of vanadium-based SCR catalyst is lower under low temperature. Utilizing an exhaust analyzer, the effects of electrically heated catalyst on the performance of vanadium-based SCR catalyst under low temperature was studied on the engine test bench. The inlet temperature of SCR catalyst without the electrically heated catalyst were in the range of 150°C∼270°C under various steady engine modes, and the NSR (Normalized Stoichiometric Ratio) was set as 0.4,0.6,0.8,1.0. The results showed that under the space velocity of 20000h−1, with the application of the electrically heated catalyst, the inlet temperature of SCR increased about 19.9°C on average and the NOx conversion efficiency improved about 8.0%. The NOx conversion efficiency increased 1.7%∼8.6% at the temperatures of 150°C∼174°C, and 1.0%∼15.9% at the temperatures of 186°C∼270°C.
Technical Paper

Effect of n-Butanol Addition on Combustion and Emission Characteristics of HTL and Diesel Blends

2020-04-14
2020-01-0393
HTL is a kind of biodiesel converted from wet biowaste via hydrothermal liquefaction (HTL), which has drawn increasing attention in recent years due to its wide range of raw materials (algae, swine manure, and food processing waste). However, from the previous experiments done in a constant volume chamber, it was observed that the presence of 20% of HTL in the blend produced as much soot as pure diesel at in chamber environment oxygen ratio of 21%, and even more soot at low oxygen ratios. It was also observed that n-butanol addition could reduce the soot emission of diesel significantly under all tested conditions. In this work, the spray and combustion characteristics of HTL and diesel blends with n-butanol added were investigated in a constant volume chamber. The in-chamber temperature and oxygen ranged from 800 to 1200 K and 21% to 13%, respectively, covering both conventional and low-temperature combustion (LTC) regimes.
X