Refine Your Search

Topic

Author

Search Results

Technical Paper

Unique Aspects Involved in the Robotic Painting of Commercial Aircraft Structures

2011-10-18
2011-01-2790
The use of paint automation in commercial aircraft production is being studied to reduce process cycle times, provide a higher quality paint finish, lower emissions, and increase process consistency. The cost of new aircraft paint hangars and increasing production rates is driving a need for increased capacity in existing facilities by using new coatings and technology. Testing of robotic painting at Boeing has uncovered unique differences between aerospace and automotive applications. Paint cure times, number of paint colors, environment control, and part size considerations are some of the issues that make aerospace application of coatings more difficult than automotive applications. Understanding the unique factors involved in the robotic application of commercial aerospace coatings is important for future advancements in application technology, gains in aircraft paint hangar capacity, delivering quality coating finishes, and lowering environmental footprint.
Journal Article

Thermal Simulation and Testing of Expanded Metal Foils Used for Lightning Protection of Composite Aircraft Structures

2013-09-17
2013-01-2132
Since the 1960's, lightning protection of aircraft has been an important design aspect, a concern for the flying public, aircraft manufacturers and the Federal Aviation Administration (FAA). With the implementation of major aircraft structures fabricated from carbon fiber reinforced plastic (CFRP) materials, lightning protection has become a more complicated issue to solve. One widely used material for lightning strike protection of CFRP structures within the aerospace industry is expanded metal foil (EMF). EMF is currently used in both military and commercial passenger aircraft. An issue that has historically been an area of concern with EMF is micro cracking of paint on the composite structure which can result in corrosion of the metal foil and subsequent loss of conductivity. This paper addresses the issues of stress and displacement in the composite structure layup which contribute to paint cracking caused by aircraft thermal cycling.
Journal Article

The Orion Air Monitor; an Optimized Analyzer for Environmental Control and Life Support

2008-06-29
2008-01-2046
This paper describes the requirements for and design implementation of an air monitor for the Orion Crew Exploration Vehicle (CEV). The air monitor is specified to monitor oxygen, nitrogen, water vapor, and carbon dioxide, and participates with the Environmental Control Life Support System (ECLSS) pressure control system and Atmosphere Revitalization System (ARS) to help maintain a breathable and safe environment. The sensing requirements are similar to those delivered by the International Space Station (ISS) air monitor, the Major Constituent Analyzer or MCA (1, 2 and 3), and the predecessors to that instrument, the Skylab Mass Spectrometer (4, 5), although with a shift in emphasis from extended operations to minimized weight. The Orion emphasis on weight and power, and relatively simpler requirements on operating life, allow optimization of the instrument toward the mass of a sensor assembly.
Technical Paper

Testing of the Prototype Plant Research Unit Subsystems

1996-07-01
961507
The Plant Research Unit (PRU) is currently under development by the Space Station Biological Research Project (SSBRP) team at NASA Ames Research Center (ARC) with a scheduled launch in 2001. The goal of the project is to provide a controlled environment that can support seed-to-seed and other plant experiments for up to 90 days. This paper describes testing conducted on the major PRU prototype subsystems. Preliminary test results indicate that the prototype subsystem hardware can meet most of the SSBRP science requirements within the Space Station mass, volume, power and heat rejection constraints.
Technical Paper

Systems Analysis of Life Support for Long-Duration Missions

2000-07-10
2000-01-2394
Work defining advanced life support (ALS) technologies and evaluating their applicability to various long-duration missions has continued. Time-dependent and time-invariant costs have been estimated for a variety of life support technology options, including International Space Station (ISS) environmental control and life support systems (ECLSS) technologies and improved options under development by the ALS Project. These advanced options include physicochemical (PC) and bioregenerative (BIO) technologies, and may in the future include in-situ-resource utilization (ISRU) in an attempt to reduce both logistics costs and dependence on supply from Earth. PC and bioregenerative technologies both provide possibilities for reducing mission equivalent system mass (ESM). PC technologies are most advantageous for missions of up to several years in length, while bioregenerative options are most appropriate for longer missions. ISRU can be synergistic with both PC and bioregenerative options.
Technical Paper

Studies of Cloud Characteristics Related to Jet Engine Ice Crystal Icing Utilizing Infrared Satellite Imagery

2015-06-15
2015-01-2086
The significant problem of engine power-loss and damage associated with ice crystal icing (ICI) was first formally recognized by the industry in a 2006 publication [1]. Engine events described by the study included: engine surge, stall, flameout, rollback, and compressor damage; which were triggered by the ingestion of ice crystals in high concentrations generated by deep, moist convection. Since 2003, when ICI engine events were first identified, Boeing has carefully analyzed event conditions documenting detailed pilot reports and compiling weather analyses into a database. The database provides valuable information to characterize environments associated with engine events. It provides boundary conditions, exposure times, and severity to researchers investigating the ICI phenomenon. Ultimately, this research will aid in the development of engine tests and ICI detection/avoidance devices or techniques.
Technical Paper

Special Requirements for Crew Interface Labels on the International Space Station

2000-07-10
2000-01-2437
The International Space Station (ISS) will be the largest structure ever built in space. Differences between ISS and previous NASA vehicles led to developing new labeling methods, conventions and material. The challenge was to provide clear and meaningful identification, location, operations and safety information for the crews who will assemble, maintain and live onboard ISS.
Technical Paper

Smoke Detection for the Orion Crew Exploration Vehicle

2009-07-12
2009-01-2542
The Orion Crew Exploration Vehicle (CEV) requires a smoke detector for the detection of particulate smoke products as part of the Fire Detection and Suppression (FDS) system. The smoke detector described in this paper is an adaptation of a mature commercial aircraft design for manned spaceflight. Changes made to the original design include upgrading the materials and electronics to space-qualified components, and modifying the mechanical design to withstand launch and landing loads. The results of laboratory characterization of the response of the new design to test particles are presented.
Technical Paper

Mark III Space Suit Mobility: A Reach Evaluation Case Study

2007-06-12
2007-01-2473
A preliminary assessment of the reach envelope and field of vision (FOV) for a subject wearing a Mark III space suit was requested for use in human-machine interface design of the Science Crew Operations and Utility Testbed (SCOUT) vehicle. The reach and view of two suited and unsuited subjects were evaluated while seated in the vehicle using 3-dimensional position data collected during a series of reaching motions. Data was interpolated and displayed in orthogonal views and cross-sections. Compared with unsuited conditions, medio-lateral reach was not strongly affected by the Mark III suit, whereas vertical and antero-posterior reach were inhibited by the suit. Lateral FOV was reduced by approximately 40° in the suit. The techniques used in this case study may prove useful in human-machine interface design by providing a new means of developing and displaying reach envelopes.
Technical Paper

Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

2000-07-10
2000-01-2247
The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories.
Technical Paper

International Space Station (ISS) Environmental Controls & Life Support System (ECLSS) Manual Oxygen Management

2005-07-11
2005-01-2895
One of the most critical functions of ECLSS is to maintain the atmospheric oxygen concentration within habitable limits. On the ISS, this function is provided by the Major Constituent Analyzer (MCA). During ISS (International Space Station) crew increments 7 thru 9, the MCA was at risk of imminent failure as evident by sustained high ion-pump current levels. In the absence of continuous constituent measurement by the MCA, manual methods of estimating partial pressure of oxygen (ppO2) and concentration levels need to be developed and validated to: (1) ensure environmental control and life support, (2) prohibit ISS system and hardware damage, and (3) enable planned ISS activities that effect constituent balance.
Technical Paper

Improved NDI Techniques for Aircraft Inspection

1998-11-10
983105
Through the use of an “Integrated Product Team” approach and new inspection techniques incorporating the latest in imaging capabilities and automation, the costs of some man-power intensive tasks can now be drastically reduced. Also, through the use of advanced eddy current techniques, the detectable size of cracks under flush-head fasteners can be reduced while maintaining reliable inspection. This article describes the evaluation and results obtained using eddy current technology to determine the minimum fasteners, Secondly, it describes the integrated efforts of engineers at Boeing DPD and Northwest Airlines in the successful application of MAUS eddy current scanning of the DC-10 circumferential and axial crow splices. The eddy current scanning greatly reduced the man-hour effort required for the existing radiographic inspection
Technical Paper

Guidance for Trade Studies of Flight-Equivalent Hardware

2007-07-09
2007-01-3223
Spacecraft hardware trade studies compare options primarily on mass while considering impacts to cost, risk, and schedule. Historically, other factors have been considered in these studies, such as reliability, technology readiness level (TRL), volume and crew time. In most cases, past trades compared two or more technologies across functional and TRL boundaries, which is an uneven comparison of the technologies. For example, low TRL technologies with low mass were traded directly against flight-proven hardware without consideration for requirements and the derived architecture. To provide for even comparisons of spacecraft hardware, trades need to consider functionality, mission constraints, integer vs. real number of flight hardware units, and mass growth allowances by TRL.
Technical Paper

Evaluation of the EMR for Swaging Collars on Advanced Composite Laminates

2005-10-03
2005-01-3299
The Boeing 787 Dreamliner will be the most fuel-efficient airliner in the world when it enters service in 2008. To help achieve this, Boeing will utilize state-of-the-art carbon fiber for primary structures. Advanced manufacturing techniques and processes will be used in the assembly of large composite structures. Electroimpact has proposed a system utilizing the low recoil Low Voltage Electromagnetic Riveter (LVER) to drill and install bolts. A test program was initiated between Boeing Materials Process and Engineering (MP&E) and Electroimpact to validate the LVER process for swaging titanium collars on titanium pins in composite material. This paper details the results of these tests.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Technical Paper

Enhanced Security Flight Deck Doors-Commercial Airplanes

2002-11-05
2002-01-2998
In the wake of the 9/11/2001 hijacking events, the Federal Aviation Administration (FAA) has emphasized the need for enhanced flight deck doors on commercial airplanes. The paper describes enhanced flight deck door, which meets the new FAA requirements for intrusion resistance and ballistic protection. In addition, the new door meets the existing requirements for rapid decompression, flight crew security and rescue.
Journal Article

Electrical Energy Storage to Meet Evolving Aircraft Needs

2012-10-22
2012-01-2199
The value of “ultracapacitors” (also referred to as “supercapacitors” or “electric double layer capacitors” in some literature) as an augmentation device when placed in parallel with “electrochemical” energy storage (i.e. battery) is presented in this paper. Since ultracapacitors possess unique attributes due to their higher value of energy storage density (or Joules/WattHrs per mass) compared to conventional capacitors while maintaining the peak power providing capability (to some degree) typical of conventional capacitors they may provide a near term solution in applications demanding longer battery operating life when placed in parallel. Such demands may be pronounced by the onset of More-Electric-Aircraft peak loads and “cold-crank” Auxiliary Power Unit (APU) electric-starting in demanding cold temperature environments.
Technical Paper

Dynamic Thermal Management System Modeling of a More Electric Aircraft

2008-11-11
2008-01-2886
Advancements in electrical, mechanical, and structural design onboard modern more electric aircraft have added significant stress to the thermal management systems (TMS). A thermal management system level analysis tool has been created in MATLAB/Simulink to facilitate rapid system analysis and optimization to meet the growing demands of modern aircraft. It is anticipated that the tracking of thermal energy through numerical integration will lead to more accurate predictions of worst case TMS sizing conditions. In addition, the non-proprietary nature of the tool affords users the ability to modify component models and integrate advanced conceptual designs that can be evaluated over multiple missions to determine the impact at a system level.
Technical Paper

Drilling Mixed Stack Materials for the BOEING 787

2010-09-28
2010-01-1867
The new combinations such as composites and titanium that are being used on today's new airplanes are proving to be very challenging when drilling holes during manufacturing and assembly operations. Gone are the days of hand drilling with high speed steel drills through soft aluminum structure, after which aluminum rivets would be swaged into those holes with very generous tolerances. The drilling processes today need to use cutter materials hard enough and tough enough to cut through hard metals such as titanium, yet be sharp enough to resistant abrasion and maintain size when drilling through composites. There is a constant search for better cutters and drills that can drill a greater number of holes. The cost of materials used in today's aircraft is much higher. The cutting tools are more expensive and the hole tolerances are much tighter.
Technical Paper

Development of a Mobile Drilling and Fastening System Based on a PKM Robotic Platform

2015-09-15
2015-01-2509
The Boeing Company has developed a mobile robotic drilling and fastening system for use in assembly processes on the lower panel of a horizontally fixtured wing. The robotic system, referred to as Lower-panel Drilling and Fastening System (LPDFS), was initially developed as part of an initiative to minimize facilities costs by not requiring costly foundation work. It is designed to operate with a high level of autonomy, minimizing operator intervention, including that required for machine setup and tool changes. System design enables positioning the work piece at a lower ergonomic height for concurrent manual processes. In all aspects of design, the system will maintain maximum flexibility for accommodating future manufacturing changes and increases in production rate, while meeting the strict accuracy requirements characteristic of aircraft manufacturing.
X