Refine Your Search

Topic

Search Results

Journal Article

Wear Dependent Tool Reliability Analysis during Cutting Titanium Metal Matrix Composites (Ti-MMCs)

2013-09-17
2013-01-2198
Metal matrix composites (MMCs) exhibit superior characteristics such as low weight, high stiffness, and high mechanical and physical properties. Inheriting such an outstanding combination of specifications, they are nowadays considered as the promising materials in the aerospace and biomedical industries. However, the presence of high abrasive reinforcing particles in MMCs leads to severe manufacturing issues. Due to the tool-particle interactions which occur during the machining of MMCs, high tool wear and poor surface finish are induced and those elements are considered as the main drawbacks of cutting MMCs. In this study, dry turning experiments were conducted for two different inserts and coated carbide on a bar of titanium metal matrix composite (Ti-MMC). Semi-finishing machining is operated with cutting parameters based on the tool supplier's recommendations which were not fully optimized. The maximum flank wear length (VBBmax) was selected as the tool wear criteria.
Technical Paper

Validation of a Hot-Air Anti-icing Simulation Code

2003-09-08
2003-01-3031
This paper presents CHT2D, a 2D hot air anti-icing simulation tool developed by the Advanced Aerodynamics group of Bombardier Aerospace. The tool has been developed from two main modules: the ice prediction code CANICE and the Navier-Stokes solver NSU2D, which is used to solve the hot air internal flow. A “weak” coupling beween the two modules based on function calls and information exchange has been priviledged. Three validation test cases are presented: for dry air conditions. Predictions from CHT2D agree quite well with the experiments. Preliminary results are also presented for a test case in icing conditions for different heat loads from the anti-icing system, to study the effect on the accumulated ice.
Technical Paper

The Effect of Wing Leading Edge Contamination on the Stall Characteristics of Aircraft

2007-09-24
2007-01-3286
Lessons learned from analysis of in-service icing incidents are described. The airfoil and wing design factors that define an aircraft's natural stall characteristics are explored, including the aerodynamic effects of contamination. Special attention is given to contamination in the form of “roughness” along wing leading edges typical of frost. In addition, the key aerodynamic effects of ground proximity and sideslip/crosswind during the take-off rotation are described. An empirical method, that can be used to predict a wing's sensitivity to wing leading edge roughness, is demonstrated. The paper explores the in-service differences of aircraft that incorporate “hard”, “supercritical” and “slatted” wings. The paper attempts to explain why the statistical evidence appears to favor the slatted wing for winter operations.
Technical Paper

Tailplane with Positive Camber for Reduced Elevator Hinge Moment

2015-09-15
2015-01-2566
The Learjet 85 is a business jet with an unpowered manual elevator control and is designed for a maximum dive Mach number of 0.89. During the early design, it was found that the stick force required for a 1.5g pull-up from a dive would exceed the limit set by FAA regulations. A design improvement of the tailplane was initiated, using 2D and 3D Navier-Stokes CFD codes. It was discovered that a small amount of positive camber could reduce the elevator hinge moment for the same tail download at high Mach numbers. This was the result of the stabilizer forebody carrying more of the tail download and the elevator carrying less. Consequently, the elevator hinge-moment during recovery from a high-speed dive was lower than for the original tail. Horizontal tails are conventionally designed with zero or negative camber since a positive camber can have adverse effects on tail stall and drag.
Journal Article

Reliability Improvement of Lithium Cells Using Laser Welding Process with Design of Experiments

2013-09-17
2013-01-2201
Manufacturing operations introduce unreliability into hardware that is not ordinarily accounted for by reliability design engineering efforts. Inspections and test procedures normally interwoven into fabrication processes are imperfect, and allow defects to escape which later result in field failures. Therefore, if the reliability that is designed and developed into an equipment/system is to be achieved, efforts must be applied during production to insure that reliability is built into the hardware. There are various ways to improve the reliability of a product. These include: Simplification Stress reduction/strength enhancement Design Improvement Using higher quality components Environmental Stress Screening before shipment Process Improvements, etc. This paper concentrates on ‘Manufacturing Process Improvement’ effort through the use of design of experiments, (DOE). Hence, improved levels of reliability can be achieved.
Journal Article

Processing CSeries Aircraft Panels

2013-09-17
2013-01-2149
Bombardier faced new manufacturing process challenges drilling and fastening CSeries* aircraft panels with multi-material stacks of composite (CFRP), titanium and aluminum in which Gemcor responded with a unique, flexible CNC Drivmatic® automatic fastening system, now in production at Bombardier. This joint technical paper is presented by Bombardier, expounding on manufacturing process challenges with the C Series aircraft design requirements and Gemcor presenting a unique solution to automatically fasten CFRP aft fuselage panels and aluminum lithium (Al Li) cockpit panels with the same CNC Drivmatic® system. After installation and preliminary acceptance at Bombardier, the CNC system was further enhanced to automatically fasten the carbon fiber pressure bulkhead dome assembly.
Journal Article

Process Change: Redesign of Composite Parts for Structural Integrity

2013-09-17
2013-01-2328
The objective of this document is to present the methodology used to verify the structural integrity of a redesigned composite part. While shifting the manufacturing process of a composite part from pre-impregnated to a liquid resin injection process, the Composites Development team at Bombardier Aerospace had to redesign the component to a new set of design allowables. The Integrated Product Development Team (IPDT) was able to quickly provide a turnkey solution that assessed three aspects of airframe engineering: Design, Materials & Processes (M&P) and Stress. The focus of this paper will be the stress substantiation process led by the Stress Engineers. It will also bring up the synergies with M&P that are unique to the IPDT approach. The stress substantiation process required three distinct checks be confirmed.
Journal Article

Preforming of a Fuselage C-Shaped Frame Manufactured by Resin Transfer Molding

2013-09-17
2013-01-2214
The need for efficient manufacturing approaches has emerged with the increasing usage of composites for structural components in commercial aviation. Resin Transfer Molding (RTM), a process where a fiber preform is injected with resin into a closed tool, can achieve high fiber content required for structural components as well as improved dimensional accuracy since all surfaces are controlled by a tool surface. Moreover, RTM is well suited for parts that can be standardized throughout the aircraft, such as a fuselage frames and stringers. The objective of this investigation is to develop a preforming approach for a C-Shaped Fuselage frame. Two approaches are proposed: tri-axial braiding and hand lay-up of Non-Crimp Fabrics. The fiber architecture of the basic materials as well as the complete preforms is explained. The necessary preforming operations are detailed. The quality control measurement of fiber orientation and thickness are presented.
Technical Paper

Prediction of Airfoil Performance with Leading Edge Roughness

1998-09-28
985544
Leading edge roughness is known to influence the aerodynamic performance of wings and airfoil sections. Aerodynamic tests show that these effects vary with the type and texture of the applied roughness. The quantification of the relationship between different types of roughness is not very clear. This makes the comparison of results from different tests difficult. An attempt has been made to find a relationship between randomly distributed roughness using cylinders of different heights and densities, roughness using ballotini, and equivalent sand grain roughness. A CFD method based on the Cebeci-Chang roughness model was used to generate correlations with experimental data. It is found that the variation of the size and density of individual roughness elements can be represented using one roughness parameter, Rp, which is equivalent to the sand grain roughness parameter used in the Cebeci-Chang model.
Journal Article

Part Redesign: From Fastened Assembly to Co-Cured Concept

2013-09-17
2013-01-2329
During the course of an aircraft program, cost and weight savings are two major areas demanding constant improvements. An Integrated Product Development Team (IPDT) was set to the task of proposing potential improvements to an aircraft under development. From a list of potential parts, the IPDT selected one which was considered as the most suitable to leverage a co-curing process. In the aircraft manufacturing industry, any major modification to a part design should follow the program's means of compliance to certification. Furthermore, to demonstrate the new design's safety, sizing methodology and all supplementary testing must fit in the certification strategy. The IPDT approach was used to ensure the maturity of both process and part. Indeed, a mature turnkey solution can be implemented quickly on the shop floor. This IPDT approach is detailed in another SAE 2013 technical paper entitled: “A Novel Approach for Technology Development: A Success Story” [3].
Journal Article

Monitor Points Method for Loads Recovery in Static/Dynamic Aeroelasticity Analysis with Hybrid Airframe Representation

2013-09-17
2013-01-2142
With the high design/performance requirements in modern aircrafts, the need for a flexible airframe structural modeling strategy during the different phases of the airframe development process becomes a paramount. Hybrid structural modeling is a technique that is used for aircraft structural representation in which several Finite Element Modeling concepts are employed to model different parts of the airframe. Among others, the Direct Matrix Input at a Grid-Point (DMIG) approach has shown superiority in developing high fidelity, yet, simplified Finite Element Models (FEM's). While the deformation approach is a common choice for loads recovery in structures represented by stick models, using structural models simulated by the DMIG representation requires the adoption of a different approach for loads recovery applications, namely, the momentum approach.
Technical Paper

Innovations in Vehicular Assembly- AM General's “Hummer” Vehicle

1985-02-01
850411
This paper provides analysis of the assembly of AM General's High Mobility Multipurpose wheeled Vehicle (the “Hummer”), the Army's replacement for the jeep. Utilizing a station by station build-up, the “Hummer” vehicle represents transfer of aerospace fastening technology, and marks a major use of riveting as a viable means of providing structural integrity in aluminum vehicular subassemblies.
Technical Paper

Hydraulic Riveting-State of the Art Technology

1997-09-30
972815
This technical paper will address advancements in automatic riveting machine design, control, and process. VME based motion control combined with new component designs have produced a very flexible, state of the art, riveting system. This flexibility allows use of the fully programmable squeeze/squeeze III slug process, and variable upper tooling clearance heights to decrease cycle times. This state of the art technology includes infinitely positionable high speed double acting servo pressure foot, drill and shave spindles, upper buck cylinder, lower ram, and lower clamp assemblies.
Technical Paper

High Performance Motion Control Without a Foundation For Fuselage Fastening Automation

2016-09-27
2016-01-2103
This technical paper details an optimized Drivmatic machine design delivered to a Tier 1 aero structure supplier to automate drilling and installation of rivets, hi-loks, lockbolts & swage collars for individual fuselage panel assemblies with high throughput & strict quality requirements. While certain robot solutions continue to be explored for specific applications at many Tier 1 aero structure suppliers, robot payload capacity has limitations beyond certain criteria, which often times point towards an alternative machine design as in this case study. A typical approach for adding more automation is to allocate shop floor space based on the solution’s foot print, however contrary to most approaches this solution had to be designed to fit within a pre-determined factory footprint over a geographic location with a high water table that would not permit a foundation.
Technical Paper

G12 Automatic Fastening Launch Vehicle

2014-09-16
2014-01-2263
The following is a unique case study expounding on automatic fastening technology designed and engineered to ramp up a Tier 2 supplier that had no experience with automatic fastening, to efficiently produce a large volume of fuselage panel assemblies with demanding process requirements in a very short amount of time. The automation technology integrated for the skin to stringer & skin to window frame fastening were two GEMCOR G12 five-axis CNC All-Electric fastening systems coupled with a Cenit offline part programming system. This joint solution served as a launch vehicle for Center Industries to efficiently supply the full rate of fuselage panel assemblies for a large volume commercial aircraft program without having any automatic riveting experience.
Technical Paper

Equivalent Sand Grain Roughness Correlation for Aircraft Ice Shape Predictions

2019-06-10
2019-01-1978
Many uncertainties in an in-flight ice shape prediction are related to convection heat transfer coefficient, which in turn depends on the flow, turbulence and laminar/turbulent transition models. The height of ice roughness element used to calculate the Equivalent Sand Grain Roughness height (ESGR) is a very important input of the turbulence model as it strongly influences the shape of the accreted ice. Unfortunately, for in-flight icing, the ESGR is unknown and generally calculated using semi-empirical models or empirical correlations based on a particular ice shape prediction code. Each ice shape prediction code is unique due to the models and correlations used and the numerical implementation. Ice roughness correlations do not have the same effect in each ice shape prediction code. A new approach to calculate the ESGR correlation taking into consideration the particularities of the ice shape prediction code is developed, calibrated and validated.
Technical Paper

Drag Prediction Using the Euler/Navier-Stokes Code FANSC

2003-09-08
2003-01-3022
Aerodynamic drag predictions using the block-structured Euler/Navier-Stokes flow solver FANSC, developed at Bombardier Aerospace for the analysis of the flow around complete aircraft configurations, are presented in this paper. To this end, the traditional far-field method, complemented with semi-empirical relations, is used for evaluating induced, form and viscous drag on a complete aircraft configuration from Euler/boundary-layer flow solutions. Recent advances in Navier-Stokes CFD methods technology are also used to yield near-field integration of the aerodynamic forces. Theoretical developments are briefly discussed on the numerical methods: the basic flow solver (discretization, time-integration, etc…), Euler/boundary-layer coupling methods (direct, semi-inverse and quasi-simultaneous) and Navier-Stokes method. The far-field and near-field drag prediction methods are discussed with emphasis on the relationship they carry with the CFD flow solution.
Technical Paper

Development of Low Cost Fuselage Frames by Resin Transfer Molding

2013-09-17
2013-01-2325
This paper presents work on the development of a low cost fuselage C-frame for aircraft primary structure using a Light Resin Transfer Molding (RTM) process. Compared to labor intensive hand layup prepreg technologies, Light RTM offers some substantial advantages by reducing infrastructure requirements such as hydraulic presses or autoclaves. Compared to Prepreg, Light RTM tooling creates two finished surfaces, which is an advantage during installation due to improved dimensional accuracy. The focus of this work was to develop means of achieving high fiber volume fraction structural frames using low cost tooling and a low volume manufacturing strategy. In this case a three piece Light RTM mold was developed using an internal mandrel. To achieve the strength requirements, a combination of crimped and non-crimped fabrics were selected for the reinforcing preform.
Technical Paper

Design of a Human-Powered Aircraft Applying Multidisciplinary Optimization Method

2013-09-17
2013-01-2318
A particular field of aerospace engineering is dedicated to the study of aircraft that are so energetically efficient, that the power produced by a human being enables it to takeoff and maintain sustained flight without any external or stored energy. These aircraft are known as Human-Powered Aircraft (HPA). The objective of the present work is to design a single-seat HPA applying multidisciplinary optimization techniques with an objective function that minimizes both the power required and the stall speed, representing respectively, an easier and safer aircraft to fly. In the first stage, a parametric synthesis model is created to generate random aircraft and assess their aerodynamic(utilizing a 3D vortex lattice method code and a component drag buildup method for the drag polar), stability and control(utilizing static stability criteria), weight (estimated using historical data) and performance (using the thus calculated data) characteristics.
Journal Article

Defining Environmental Indicators at Detail Design Stage as Part of an Ecodesign Strategy

2013-09-17
2013-01-2276
Implementing Design for Environment (DfE) into the design process requires a strategic integration. Furthermore, as DfE is continuously evolving, flexible processes need to be implemented. This article focuses on the integration of DfE into an optimization framework with the objective of influencing next-generation aircraft. For this purpose, DfE and Structures groups are developing together a set of new environmental indicators covering all life cycle stages of the product by coupling a list of yes/no questions with an environmental matrix. The following indicators are calculated: Regulation risk, Impact of manufacturing the part, CO2 emissions and Recyclability potential. These indicators will be used as constraints in the multi-disciplinary design optimization (MDO) framework, meaning that the structure will be designed while complying with environmental targets and anticipating future regulation changes.
X