Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simultaneous Durability Assessment and Relative Random Analysis Under Base Shake Loading Conditions

2017-03-28
2017-01-0339
For many automotive systems it is required to calculate both the durability performance of the part and to rule out the possibility of collision of individual components during severe base shake vibration conditions. Advanced frequency domain methods now exist to enable the durability assessment to be undertaken fully in the frequency domain and utilizing the most advanced and efficient analysis tools (refs 1, 2, 3, 4, 5). In recent years new capabilities have been developed which allow hyper-sized models with multiple correlated loadcases to be processed. The most advanced stress processing (eg, complex von-Mises) and fatigue algorithms (eg, Strain-Life) are now included. Furthermore, the previously required assumptions that the loading be stationary, Gaussian and random have been somewhat relaxed. For example, mixed loading like sine on random can now be applied.
Technical Paper

Loads Cascading in the Frequency Domain

2018-04-03
2018-01-0138
A previous SAE paper (ref. 1) did a comparative study of automotive system fatigue models processed in the time and frequency domain. A subsequent paper (ref. 2) looked at relative random analysis under base shake loading conditions. This paper proposes to merge these two analysis procedures to implement a new “Loads Cascading” procedure. The objective of this paper will be to show how loads (accelerations, displacements, forces) can be cascaded (transferred) from input load position such as road load data (RLD) body loads to some internal location, for example a battery pack location. Also note that the response from one “module” could form the input to another, therefore, once the loadings are in the frequency domain, the possibility exists to “cascade” the loads through a system. For example, from the chassis, to the subframe to attached components.
X