Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

xEV Propulsion System Control-Overview and Current Trends

2021-04-06
2021-01-0781
Propulsion system control algorithms covering the functional needs of xEV propulsion (‘x’ donates P0-P4 configurations) systems are presented in this paper. The scope and foundation are based on generic well-established HEV controller architectures. However, unlike conventional HEV (series, parallel and power split) powertrains, the next generation of integrated electric propulsion configurations will utilize a single micro controller that supports multiple control functions ranging from the electric machines, inverters, actuators, clutch solenoids, coolant pumps, etc. This presents a unique challenge to architect control algorithms within the AUTOSAR framework while satisfying the complex timing requirements of motor/generator-inverter (MGi) control and increased interface definitions between software components to realize functional integration between the higher level propulsion system and its sub-systems.
Technical Paper

Water Recovery from Gasoline Engine Exhaust for Water Injection

2018-04-03
2018-01-0369
Water injection (WI) can improve gasoline engine performance and efficiency, and on-board water recovery technology could eliminate the need for customers to refill an on-board water reservoir. In this regard, the technical feasibility of exhaust water recovery (EWR) is described in this paper. Water injection testing was conducted at a full load condition (5000 rpm/18.1 bar BMEP) and a high load condition (3000 rpm/14.0 bar BMEP) on a turbocharged gasoline direction injection (GTDI) engine. Water recovery testing was conducted both after the exhaust gas recirculation (EGR) cooler and after the charge air cooler (CAC) at a high load (3000 rpm/14.0 bar BMEP), as well as a part load (2080 rpm/6.8 bar BMEP) condition, at temperatures ca. 10-15 °C below the dew point of the flow stream. Three types of water separation designs were tested: a passive cyclone separator (CS), a passive membrane separator (MEM), and an active separator (AS).
Journal Article

Waste Heat Recovery for Light-Duty Truck Application Using ThermoAcoustic Converter Technology

2017-03-28
2017-01-0153
Nearly a third of the fuel energy is wasted through the exhaust of a vehicle. An efficient waste heat recovery process will undoubtedly lead to improved fuel efficiency and reduced greenhouse gas (GHG) emissions. Currently, there are multiple waste heat recovery technologies that are being investigated in the auto industry. One innovative waste heat recovery approach uses Thermoacoustic Converter (TAC) technology. Thermoacoustics is the field of physics related to the interaction of acoustic waves (sonic power) with heat flows. As in a heat engine, the TAC produces electric power where a temperature differential exists, which can be generated with engine exhaust (hot side) and coolant (cold side). Essentially, the TAC converts exhaust waste heat into electricity in two steps: 1) the exhaust waste heat is converted to acoustic energy (mechanical) and 2) the acoustic energy is converted to electrical energy.
Technical Paper

Virtual Test of Injector Design Using CFD

2014-09-30
2014-01-2351
Diesel exhaust aftertreatment solutions using injection, such as urea-based SCR and lean NOx trap systems, effectively reduce the emission NOx level in various light vehicles, commercial vehicles, and industrial applications. The performance of the injector plays an important role in successfully utilizing this type of technology, and the CFD tool provides not only a time and cost-saving, but also a reliable solution for extensively design iterations for optimizing the injector internal nozzle flow design. Inspired by this fact, a virtual test methodology on injector dosing rate utilizing CFD was proposed for the design process of injector internal nozzle flows.
Technical Paper

Virtual Exhaust-Gas Aftertreatment Test Bench - A Contribution to Model-Based Development and Calibration of Engine Control Algorithmsa

2012-04-16
2012-01-0897
Introducing new exhaust-gas aftertreatment concepts at mass production level places exacting demands on the overall development process - from defining process engineering to developing and calibrating appropriate control-unit algorithms. Strategies for operating and controlling exhaust-gas aftertreatment components, such as oxidation and selective catalytic reduction catalysts (DOC and SCR), diesel particulate filters (DPF) and SCR on DPF systems (SCR/DPF), have a major influence on meeting statutory exhaust-emission standards. Therefore it is not only necessary to consider the physical behavior of individual components in the powertrain but also the way in which they interact as the basis for ensuring efficient operation of the overall system.
Technical Paper

Valvetrain System for Exhaust Rebreathing on a Light-Duty Gasoline Compression Ignition (GCI) Engine

2023-10-31
2023-01-1673
The global automotive industry is undergoing a significant transition as battery electric vehicles enter the market and diesel sales decline. It is widely recognized that internal combustion engines (ICE) are needed for transport for years to come, however, demands on fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieving demanding future efficiency and emissions targets. A key technology enabler for GCI is partially premixed, compression ignition (PPCI) combustion, which involves two high-pressure, late, fuel injections during the compression stroke. Both NOx and smoke emissions are greatly reduced relative to diesel engines, and this reduces aftertreatment (AT) requirements significantly. Exhaust rebreathing (RB) is used for robust low-load and cold operation. This is enabled by use of 2-Step, mode switching rocker arms to allow switching between rebreathe and normal combustion modes.
Technical Paper

Uncertainty Characterization and Quantification in Product Validation and Reliability Demonstration

2016-04-05
2016-01-0270
Product validation and reliability demonstration require testing of limited samples and probabilistic analyses of the test data. The uncertainties introduced from the tests with limited sample sizes and the assumptions made about the underlying probabilistic distribution will significantly impact the results and the results interpretation. Therefore, understanding the nature of these uncertainties is critical to test method development, uncertainty reduction, data interpretation, and the effectiveness of the validation and reliability demonstration procedures. In this paper, these uncertainties are investigated with the focuses on the following two aspects: (1) fundamentals of the RxxCyy criterion used in both the life testing and the binomial testing methods, (2) issues and benefits of using the two-parameter Weibull probabilistic distribution function.
Technical Paper

Transient Performance of an HC LNC Aftertreatment System Applying Ethanol as the Reductant

2012-09-24
2012-01-1957
As emissions regulations around the world become more stringent, emerging markets are seeking alternative strategies that align with local infrastructures and conditions. A Lean NOx Catalyst (LNC) is developed that achieves up to 60% NOx reduction with ULSD as its reductant and ≻95% with ethanol-based fuel reductants. Opportunities exist in countries that already have an ethanol-based fuel infrastructure, such as Brazil, improving emissions reduction penetration rates without costs and complexities of establishing urea infrastructures. The LNC performance competes with urea SCR NOx reduction, catalyst volume, reductant consumption, and cost, plus it is proven to be durable, passing stationary test cycles and adequately recovering from sulfur poisoning. Controls are developed and applied on a 7.2L engine, an inline 6-cylinder non-EGR turbo diesel.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

The Role of CFD Combustion Simulation in Diesel Burner Development

2009-10-06
2009-01-2878
Diesel burners introduce combustion of diesel fuel to raise exhaust gas temperature to Diesel Oxidization Catalyst (DOC) light-off or Diesel Particulate Filter (DPF) regeneration conditions, thereby eliminating the need of engine measures such as post-injections. Such diesel combustion requirement nevertheless poses challenges to burner development especially in combustion control and risk mitigation of DPF material failure. In particular, burner design must satisfy good soot distribution and heat distribution at DPF front face after meeting minimum requirements of ignition, heat release, and backpressure. In burner development, Computational Fluid Dynamics (CFD) models have been developed based on commercial codes for burner thermal and flow management with capability of predicting comprehensive physical and chemical phenomena including turbulence induced mixing, fuel injection, fuel droplet transport, diesel combustion, radiation, conjugate heat transfer and etc.
Technical Paper

The Automated Shift Transmission (AST) - Possibilities and Limits in Production-Type Vehicles

2001-03-05
2001-01-0881
State-of-the-art powertrain concepts with automatic transmission must comply with increasingly stringent legislation on emissions and fuel consumption while fulfilling or surpassing customers' expectations as to driveability. In this respect, automated manual transmissions (AMT) and automated shift transmissions (AST) must compete with conventional automatic transmissions (AT) and continuously variable transmissions (CVT). In order to exploit the theoretical advantages of ASTs and put them into practice, complex ECU functions are needed to coordinate engine and transmission. Adaptive control, sophisticated clutch management and an intelligent shifting strategy allow shifting quality and shifting points to be simultaneously optimized to the effect that performance and comfort are increased while fuel consumption is reduced.
Technical Paper

Temperature Effect in Exhaust System Fatigue Life Prediction

2011-04-12
2011-01-0783
Automotive exhaust system experiences vibratory and thermal loads. Bogey test had been the major validation method until recent years when the strain-life approach was adopted to evaluate component's fatigue life. In practice, when using the strain-life model to evaluate a component subjected to elevated temperature, temperature effect on component fatigue life is considered by introducing a temperature scale factor KC that is used to scale up the measured nominal strain, hence the mechanical load. This paper intends to propose a method to estimate KC by designing component bench tests at room temperature and at elevated temperature, respectively. Two major failure modes in the exhaust system are investigated and different temperature effects on the base metal fatigue and on the weld or heat-affected zone are analyzed.
Journal Article

Statistical Characterization, Pattern Identification, and Analysis of Big Data

2017-03-28
2017-01-0236
In the Big Data era, the capability in statistical and probabilistic data characterization, data pattern identification, data modeling and analysis is critical to understand the data, to find the trends in the data, and to make better use of the data. In this paper the fundamental probability concepts and several commonly used probabilistic distribution functions, such as the Weibull for spectrum events and the Pareto for extreme/rare events, are described first. An event quadrant is subsequently established based on the commonality/rarity and impact/effect of the probabilistic events. Level of measurement, which is the key for quantitative measurement of the data, is also discussed based on the framework of probability. The damage density function, which is a measure of the relative damage contribution of each constituent is proposed. The new measure demonstrates its capability in distinguishing between the extreme/rare events and the spectrum events.
Journal Article

Spatially Optimized Diffusion Alloys: A Novel Multi-Layered Steel Material for Exhaust Applications

2020-04-14
2020-01-1051
A novel Spatially Optimized Diffusion Alloy (SODA) material has been developed and applied to exhaust systems, which are an aggressive environment subject to high temperatures and loads, as well as excessive corrosion. Traditional stainless steels disperse chromium homogeneously throughout the material, with varying amounts ranging from 10% to 20% dependent upon its grade (e.g. 409, 436, 439, 441, and 304). SODA steels, however, offer layered concentrations of chromium, enabling an increased amount along the outer surface for much needed corrosion resistance and aesthetics. This outer layer, typically about 70μm thick, exceeds 20% of chromium concentration locally, but is less than 3% in bulk, offering selective placement of the chromium to minimize its overall usage. Since this layer is metallurgically bonded, it cannot delaminate or separate from its core, enabling durable protection throughout manufacturing processes and full useful life.
Technical Paper

Software Quality is Not a Coincidence: A Model-Based Test Case Generator

2005-04-11
2005-01-1664
IAV GmbH is currently developing a test case generator, which uses information from Simulink®/Stateflow® models to generate test cases automatically. These test cases can then be applied during software tests for an ECU to show conformance to the original model. Using predefined rules, test cases for individual blocks are generated and converted into test cases for a whole model. The test cases can be saved as a XML file. Then, this file can be converted into test script languages which are used by tools for test execution. With the test case generator, the time-consuming and error-prone task of manual test case definition can be automated, thus decreasing test expenses for each test while increasing test quality.
Journal Article

Secondary Fuel Injection Layout Influences on DOC-DPF Active Regeneration Performance

2013-09-24
2013-01-2465
Catalysts and filters continue to be applied widely to meet particulate matter regulations across new and retrofit diesel engines. Soot management of the filter continues to be enhanced, including regeneration methodologies. Concerns regarding in-cylinder post-injection of fuel for active regeneration increases interests in directly injecting this fuel into the exhaust. Performance of secondary fuel injection layouts is discussed, and sensitivities on thermal uniformity are measured and analyzed, providing insight to packaging challenges and methods to characterize and improve application designs. Influences of end cone geometries, mixers, and injector mounting positions are quantified via thermal distribution at each substrate's outlet. A flow laboratory is applied for steady state characterization, repeated on an engine dynamometer, which also provides transient results across the NRTC.
Technical Paper

Quality Control and Improvement Based on Design of Experiments and Statistical Data Analysis

2014-04-01
2014-01-0774
A modern definition of quality control and improvement is the reduction of variability in processes and products. The reduced variability can be directly translated into lower costs, better functions and fewer repairs. However, the final quality of processes and products is sometimes derived from other measured variables through some implicit or explicit functional relationships. Sometimes, a tiny uncertainty in a variable can produce a huge uncertainty in a derived quantity. Therefore, the propagation of uncertainty needs to be understood and the individual variables need to be well controlled. More importantly, the critical factors that affect quality the most should be identified and thoroughly investigated. Design of experiments and statistical control plays central roles in finding root cause of failure, reduction of variability and quality improvement.
Journal Article

Probabilistic Life and Damage Assessment of Components under Fatigue Loading

2015-09-29
2015-01-2759
This study presents a probabilistic life (failure) and damage assessment approach for components under general fatigue loadings, including constant amplitude loading, step-stress loading, and variable amplitude loading. The approach consists of two parts: (1) an empirical probabilistic distribution obtained by fitting the fatigue failure data at various stress range levels, and (2) an inverse technique, which transforms the probabilistic life distribution to the probabilistic damage distribution at any applied cycle. With this approach, closed-form solutions of damage as function of the applied cycle can be obtained for constant amplitude loading. Under step-stress and variable amplitude loadings, the damage distribution at any cycle can be calculated based on the accumulative damage model in a cycle-by-cycle manner. For Gaussian-type random loading, a cycle-by-cycle equivalent, but a much simpler closed-form solution can be derived.
Technical Paper

Probabilistic Isothermal, Anisothermal, and High-Temperature Thermo-Mechanical Fatigue Life Assessment and CAE Implementations

2016-04-05
2016-01-0370
Fatigue life assessment is an integral part of the durability and reliability evaluation process of vehicle exhaust components and systems. The probabilistic life assessment approaches, including analytical, experimental, and simulation, CAE implementation in particular, are attracting significant attentions in recent years. In this paper, the state-of-the-art probabilistic life assessment methods for vehicle exhausts under combined thermal and mechanical loadings are reviewed and investigated. The loading cases as experienced by the vehicle exhausts are first categorized into isothermal fatigue, anisothermal fatigue, and high-temperature thermomechanical fatigue (TMF) based on the failure mechanisms. Subsequently, the probabilistic life assessment procedures for each category are delineated, with emphasis on product validation.
Technical Paper

Potential of an Innovative, Fully Variable Valvetrain

2004-03-08
2004-01-1393
Under the persistent pressure to further reduce fuel consumption worldwide, it is necessary to advance the processes that influence the efficiency of gasoline engines. In doing so, harnessing the entire potential of fully variable mechanical valve trains will involve targeting efforts on optimizing all design parameters. A new type of valve timing system is used to portray thermodynamic and mechanical as well as electronic aspects of developing fully variable mechanical valve timing and lift systems
X