Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Phenomenological Autoignition Model for Diesel Sprays Using Reduced Chemical Kinetics and a Characteristic Scalar Dissipation Rate

2017-03-28
2017-01-0523
This study focuses on the development of an autoignition model for diesel sprays that is applicable to phenomenological multi-zone combustion models. These models typically use a single-step Arrhenius expression to represent the low-temperature chemistry leading up to autoignition. There has been a substantial amount of work done in the area of n-heptane autoignition in homogeneous mixtures. Reduced kinetic mechanisms with ten reactions or less have been proposed in the literature to represent the complex low-temperature oxidation of n-heptane. These kinetic models are attractive for multi-zone simulations because of the low number of reactions involved. However, these kinetic mechanisms and the multi-zone treatment of the fuel spray do not account for the effect of turbulence/chemistry interactions on the chemical reaction rate.
Journal Article

On-Road Evaluation of a PEMS for Measuring Gaseous In-Use Emissions from a Heavy-Duty Diesel Vehicle

2008-04-14
2008-01-1300
On-road comparisons were made between a federal reference method mobile emissions laboratory (MEL) and a portable emissions measurement system (PEMS) to support validation of the engine “Not To Exceed” (NTE) emissions design and to evaluate the accuracy of PEMS. Three different brake specific emissions calculation equations (methods) were used as part of this research, with method one directly using engine speed and torque, and methods two and three including ECM fuel consumption and carbon balance fuel consumption. The brake specific NOx emissions for the particular PEMS unit utilized in this program were consistently higher than those for the MEL. The brake specific (bs) NOx NTE deltas were +0.63±0.31 g/kW-h (0.47±0.23 g/hp-h), +0.55±0.17 g/kW-h (0.41±0.13 g/hp-h), and +0.54±0.17g/kW-h (0.40±0.13g/hp-h) for methods one, two, and three respectively.
Technical Paper

Development of a Low-Emission, Dedicated Ethanol-Fuel Vehicle with Cold-Start Distillation System

1999-03-01
1999-01-0611
This paper discusses the design and strategy for conversion of a vehicle to dedicated E85 (85% ethanol, 15% indolene clear) operation for participation in the 1998 Ethanol Vehicle Challenge by the University of California, Riverside. The primary focus of the design consists of: Development of a -7°C cold starting system utilizing a distillation process. Development of a close-coupled catalyst and secondary air injection system to decrease FTP cold start emissions. This paper begins with a theoretical description and design of a novel distillation system that can provide gasoline- enriched fuel for starting in cold weather. This is followed by a description of modifications to the engine, emission control system, and other vehicle components. Modifications included engine changes to increase thermal efficiency, to improve handling, and to reduce friction. Suspension modifications were made to improve handling.
X