Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

UltraCapacitor Power for a Drag Racecar

2004-11-30
2004-01-3500
A student team from Brigham Young University (BYU) set a new record for the world's fastest electric drag racecar. The team modified a production EV1 donated to the university by the General Motors Corporation and installed a bank of 160 UltraCapacitors rated at 2700 farads each. This paper describes the design of the capacitor pack, the car's drive train, the charging method and other modifications of the vehicle. Here we also discuss performance and race data from an official quarter-mile drag race sanctioned by the National Electric Drag Racing Association. A simulation model for vehicle performance was also developed and is presented here.
Technical Paper

Toward Human-Robot Interface Standards: Use of Standardization and Intelligent Subsystems for Advancing Human-Robotic Competency in Space Exploration

2006-07-17
2006-01-2019
NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Technical Paper

Racecar Aerodynamic Optimization for an E-1 Class Streamliner Using Arbitrary Shape Deformation

2007-09-17
2007-01-3858
This report presents the results of a CFD study to develop a bodywork package to improve the aerodynamic performance of the Brigham Young University (BYU) Electric Streamliner. A comparison of the pressure distribution and the flow around the baseline and final ‘recommended’ configuration is also presented. The effect of the CFD developed body geometry to the vehicle has been to increase downforce by almost 300lbf when it is at 200mph, while reducing drag by 8.5lbf. The final lift to drag ratio is -1.56 as compared to the .67 baseline.
Technical Paper

Initial Comparisons of Friction Stir Spot Welding and Self Piercing Riveting of Ultra-Thin Steel Sheet

2018-04-03
2018-01-1236
Due to the limitations on resistance spot welding of ultra-thin steel sheet (thicknesses below 0.5 mm) in high-volume automotive manufacturing, a comparison of friction stir spot welding and self-piercing riveting was performed to determine which process may be more amenable to enabling assembly of ultra-thin steel sheet. Statistical comparisons between mechanical properties of lap-shear tensile and T-peel were made in sheet thickness below 0.5 mm and for dissimilar thickness combinations. An evaluation of energy to fracture, fracture mechanisms, and joint consistency is presented.
Technical Paper

Fuel Composition and Molecular Structure Effects on Soot Formation in Direct-Injection Flames Under Diesel Engine Conditions

2005-04-11
2005-01-0381
Numerous investigations have been conducted to determine the effect of fuel composition and molecular structure on particulate emissions using exhaust gas analysis, but relatively few measurements have been obtained in-cylinder or under conditions where fuel effects can be isolated from other variables. Recent work has shown that the amount of air entrained upstream of the lift-off length is critical to soot formation and therefore must be controlled when making relative comparisons of soot formed from various fuels. In this work, dimethoxymethane was used as the base fuel to produce a non-sooting flame with relatively constant lift-off length in a constant volume combustion vessel at 1000 K, and a density of 16.6 kg/m3. A second fuel was then mixed into the dimethoxymethane (DMM) to determine a point at which soot formation begins.
Technical Paper

Extinction Measurements of In-Cylinder Soot Deposition in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1296
The combustion process in diesel engines deposits soot on the in-cylinder surfaces. Previous works have suggested that these soot deposits eventually break off during cylinder blow-down and the exhaust stroke and contribute significantly to exhaust soot emissions. In order to better understand this potential pathway to soot emissions, the authors recently investigated combusting fuel-jet/wall interactions in a diesel engine. This work, published as a companion paper, showed how soot escaped from the combusting fuel jet and was brought in close proximity to the wall so that it could become a deposit. The current study extends this earlier work with laser-extinction measurements of the soot-deposition rate in the same single-cylinder, heavy-duty DI diesel engine. Measurements were made by passing the beam of a CW-diode laser through a window in the piston bowl rim that was in-line with one of the fuel jets.
Technical Paper

Effects of Water-Fuel Emulsions on Spray and Combustion Processes in a Heavy-Duty DI Diesel Engine

2002-10-21
2002-01-2892
Significant reductions of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines have been realized through fueling with water-fuel emulsions. However, the physical and chemical in-cylinder mechanisms that affect these pollutant reductions are not well understood. To address this issue, laser-based and chemiluminescence imaging experiments were performed in an optically-accessible, heavy-duty diesel engine using both a standard diesel fuel (D2) and an emulsion of 20% water, by mass (W20). A laser-based Mie-scatter diagnostic was used to measure the liquid-phase fuel penetration and showed 40-70% greater maximum liquid lengths with W20 at the operating conditions tested. At some conditions with low charge temperature or density, the liquid phase fuel may impinge directly on in-cylinder surfaces, leading to increased PM, HC, and CO emissions because of poor mixing.
Technical Paper

Diffusion-Flame / Wall Interactions in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1295
Over the past decade, laser diagnostics have improved our understanding of many aspects of diesel combustion. However, interactions between the combusting fuel jet and the piston-bowl wall are not well understood. In heavy-duty diesel engines, with typical fuels, these interactions occur with the combusting vapor-phase region of the jet, which consists of a central region containing soot and other products of rich-premixed combustion, surrounded by a diffusion flame. Since previous work has shown that the OH radical is a good marker of the diffusion flame, planar laser-induced fluorescence (PLIF) imaging of OH was applied to an investigation of the diffusion flame during wall interaction. In addition, simultaneous OH PLIF and planar laser-induced incandescence (PLII) soot imaging was applied to investigate the likelihood for soot deposition on the bowl wall.
Technical Paper

Calibration of an RGB, CCD Camera and Interpretation of its Two-Color Images for KL and Temperature

2005-04-11
2005-01-0648
The two-color method for measuring temperature and optical thickness of soot (KL) has become a standard diagnostic tool for the evaluation of engine designs and technologies relative to soot formation and flame temperature. Implementation of the two-color technique typically requires two cameras or a set of half-pass mirrors and optical narrow band-pass filters. In this paper, a technique for collecting and interpreting two-color images with a single calibrated camera without image splitting and filtering hardware is demonstrated and discussed. This method uses a relatively inexpensive commercial, 10-bit, RGB color, CCD camera capable of 16 μs exposure times. The CCD has published spectral response curves in the visible range, but a method for obtaining the spectral response for the optical system using a monochromator is discussed.
Technical Paper

A Manufacturing Performance Comparison of RSW and RFSSW Using a Digital Twin

2024-04-09
2024-01-2053
The design of lightweight vehicle structures has become a common method for automotive manufacturers to increase fuel efficiency and decrease carbon emission of their products. By using aluminum instead of steel, manufacturers can reduce the weight of a vehicle while still maintaining the required strength and stiffness. Currently, Resistance Spot Welding (RSW) is used extensively to join steel body panels but presents challenges when applied to aluminum. When compared to steel, RSW of aluminum requires frequent electrode cleaning, higher energy usage, and more controlled welding parameters, which has driven up the cost of manufacturing. Due to the increased cost associated with RSW of aluminum, Refill Friction Stir Spot Welding (RFSSW) is being considered as an alternative to RSW for joining aluminum body panels. RFSSW consumes less energy, requires less maintenance, and produces more consistent welding in aluminum as compared to RSW.
Technical Paper

A Comparison and Model of NOx Formation for Diesel Fuel and Diethyl Ether

2001-03-05
2001-01-0654
Exhaust NOx and particulate measurements were obtained at equivalent operating conditions in a direct-injection compression ignition engine for diesel and diethyl ether fuel. Particulate levels for diethyl ether were very low relative to the diesel fuel and did not increase significantly until the fuel to oxygen equivalence ratio was above 0.8. The log of fuel specific NOx for both the diesel and diethyl ether fuel were found to correlate well with the inverse of adiabatic flame temperature as has been observed by others in previous research. A newly defined heat release averaged, adiabatic flame temperature improved the correlation of both fuels. Differences in the correlations of the two fuels with this newly defined temperature were smaller than the scatter of the data.
X