Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Ventilation Characteristics of Modeled Compact Car Part 1 Airflow Velocity Measurement with PIV

2008-04-14
2008-01-0732
In the present study, a model experiment is performed in order to clarify the ventilation characteristics of car cabin. This study also provides high precision data for benchmark test. As a first step, the ventilation mode is tested, which is one of the representative air-distribution modes. Part 1 describes the properties of the flow field in the cabin obtained by the experiment. Part 2 describes the ventilation efficiencies such as the age of air by using trace gas method. The properties of flow field are measured using particle image velocimetry (PIV). The mean velocity profiles, the standard deviation distribution, and the turbulence intensity distribution are discussed. The brief comparison between experiments and predictions of computational fluid dynamics (CFD) is also presented. In the comparison between experiment and CFD, the results showed similar flow field.
Technical Paper

The Mechanism of Hissing Noise in the Automotive Cabin and Countermeasures for its Reduction

2019-06-05
2019-01-1474
The automotive refrigerant system can occasionally exhibit an excessive noise out of air-conditioner (A/C) vents during vehicle’s developments. If the vehicle has been parked for long hours in summer and the A/C system is turned on, sometimes hissing noise is induced by the refrigerant flow. In order to understand the mechanism, a lot of bench and vehicle tests were conducted. However, there is still not enough to understand the physical behavior in detail. Therefore, for the first step, the visualization method to capture the behavior of multi-phased refrigerant flow jet inside the pipe was proposed with a high-speed camera, some light devices and acrylic test piece. In addition, image analysis to quantify the flow regime from a series of observed snapshots. Using proposed method, the correlation study between flow and noise was performed at A/C bench test. As a result, different flow features such as the velocity can be observed in the occurrence of the noise or not.
Technical Paper

The DaimlerChrysler Full-Scale Aeroacoustic Wind Tunnel

2003-03-03
2003-01-0426
This paper provides an overview of the design and commissioning results for the DaimlerChrysler full-scale vehicle Aeroacoustic Wind Tunnel (AAWT) brought online in 2002. This wind tunnel represents the culmination of the plan for aeroacoustic facilities at the DaimlerChrysler Corporation Technical Center (DCTC) in Auburn Hills, Michigan. The competing requirements of excellent flow quality, low background noise, and constructed cost within budget were optimized using Computational Fluid Dynamics, extensive acoustic modeling, and a variety of scale-model experimental results, including dedicated experiments carried out in the 3/8-scale pilot wind tunnel located at DCTC. The paper describes the project history, user requirements, and design philosophy employed in realizing the facility. The AAWT meets all of DaimlerChrylser's performance targets, and was delivered on schedule. The commissioning results presented in this paper show its performance to be among the best in the world.
Technical Paper

Side Window Buffeting Characteristics of an SUV

2004-03-08
2004-01-0230
Buffeting is a wind noise of high intensity and low frequency in a moving vehicle when a window or sunroof is open and this noise makes people in the passenger compartment very uncomfortable. In this paper, side window buffeting was simulated for a typical SUV using the commercial CFD software Fluent 6.0. Buffeting frequency and intensity were predicted in the simulations and compared with the corresponding experimental wind tunnel measurement. Furthermore, the effects of several parameters on buffeting frequency and intensity were also studied. These parameters include vehicle speed, yaw angle, sensor location and volume of the passenger compartment. Various configurations of side window opening were considered. The effects of mesh size and air compressibility on buffeting were also evaluated. The simulation results for some baseline configurations match the corresponding experimental data fairly well.
Technical Paper

Racecar Aerodynamic Optimization for an E-1 Class Streamliner Using Arbitrary Shape Deformation

2007-09-17
2007-01-3858
This report presents the results of a CFD study to develop a bodywork package to improve the aerodynamic performance of the Brigham Young University (BYU) Electric Streamliner. A comparison of the pressure distribution and the flow around the baseline and final ‘recommended’ configuration is also presented. The effect of the CFD developed body geometry to the vehicle has been to increase downforce by almost 300lbf when it is at 200mph, while reducing drag by 8.5lbf. The final lift to drag ratio is -1.56 as compared to the .67 baseline.
Technical Paper

Investigation for the Effect of the External Noise Sources onto the Interior Aerodynamic Noise

2013-04-08
2013-01-1257
To research the mechanism of automobile aerodynamic noise which transmits to the inside of a cabin, flow structure and sound field have been investigated by applying experimental measurements at the wind tunnel and computational fluid dynamics (CFD) based on lattice Boltzmann method (LBM). In this research, transmitted noise at a front side window glass is focused. Pressure fluctuations on the side window glass contain both hydrodynamic pressure fluctuations induced by convection of flow field and acoustic pressure fluctuations propagated from noise sources. But it was found that acoustic pressure fluctuations have large contributions on the side window glass at the high frequency range by considering of the experimental transmission loss. On the other hand, at the low frequency range, hydrodynamic pressure fluctuations are dominant, however their effects to transmitted noise are not so influential for high fluctuation levels.
Technical Paper

Heat Transfer Enhancement through Impingement of Flows and its Application in Lock-up Clutches

2005-04-11
2005-01-1936
An impinging-flow based methodology of enhancing the heat transfer in the grooves of a lockup clutch is proposed and studied. In order to evaluate its efficacy and reveal the mechanism, the three-dimensional flow within the groove was solved as a conjugate heat transfer problem in a rotating reference frame using the commercial CFD code FLUENT. The turbulence characteristics were predicted using k-ε model. The comparison of cooling effect was made between a simple baseline groove pattern and a typical flow-impingement based groove pattern of the same groove-to-total area ratio in terms of heat rejection ratio, maximum surface temperature, and heat transfer coefficient. It is found that more heat can be rejected with the impinging-flow based groove from the friction surface than with the baseline while the maximum surface temperature is lower in the former case.
Technical Paper

Experimental & Computational Simulations Utilized During the Aerodynamic Development of the Dodge Intrepid R/T Race Car

2002-12-02
2002-01-3334
Experimental and computational simulation techniques were concurrently employed throughout the aerodynamic development of the NASCAR Dodge Intrepid R/T in order to achieve a greater understanding of the complex flow fields involved. With less than 500 days to design, understand, and build a competitive vehicle, the development team utilized a closed loop approach to testing. Scale wind tunnel models and Computational Fluid Dynamics (CFD) were used to identify program direction and to speed the development cycle versus the traditional process of full scale testing. This paper will detail the process and application of both the experimental and computational techniques used in the aerodynamic development of the Intrepid R/T race vehicle, primarily focusing on the earlier stages that led to its competition introduction at the start of the 2001 season.
Technical Paper

Development of Momentum Source Model of Vehicle Turbocharger Turbine

2016-04-05
2016-01-0210
Recently, the evaluation of the thermal environment of an engine compartment has become more difficult because of the increased employment and installation of turbochargers. This paper proposes a new prediction model of the momentum source for the turbine of a turbocharger, which is applicable to three-dimensional thermal fluid analyses of vehicle exhaust systems during the actual vehicle development phase. Taking the computational cost into account, the fluid force given by the turbine blades is imitated by adding an external source term to the Navier-Stokes equations corresponding to the optional domain without the computational grids of the actual blades. The mass flow rate through the turbine, blade angle, and number of blade revolutions are used as input data, and then the source is calculated to satisfy the law of the conservation of angular momentum.
Technical Paper

CFD Simulation of the Flows Within Disengaged Wet Clutches of an Automatic Transmission

2003-03-03
2003-01-0320
The flow within the disengaged wet clutch packs of an automatic transmission has been simulated as a three-dimensional, steady-state, two-phase flow using the commercial computational fluid dynamics (CFD) code FLUENT. The flow within a clutch with ungrooved friction plates was first solved for validating the CFD model, followed by a simulation of the flow within a clutch with grooved friction plates. A group of dimensionless variables have been established for mathematically modeling the drag torque and power loss in clutch packs. The effects of rotating speed of friction plate, pack clearance, and flow rate on drag torque and power loss have been studied.
Technical Paper

Attempts for Reduction of Rear Window Buffeting Using CFD

2005-04-11
2005-01-0603
This paper summarizes the major activities of CFD study on rear window buffeting of production vehicles during the past two years at DaimlerChrysler. The focus of the paper is the attempt to find suitable solutions for buffeting suppression using a developed procedure of CFD simulation with commercial software plus FFT acoustic post-processing. The analysis procedure has been validated using three representative production vehicles and good correlation with wind tunnel tests has been attained which has gained the confidence in solving the buffeting problem. Several attempts have been proposed and tried to find solution for buffeting reduction. Some of them are promising, but feasibility and manufacturability still need discussion. In order to find suitable solution for buffeting reduction, more basic research is necessary, more ideas should be collected, and more joint efforts of CFD and testing are imperative.
Technical Paper

An Efficient Procedure for Vehicle Thermal Protection Development

2005-04-11
2005-01-1904
Vehicle thermal protection is an important aspect of the overall vehicle development process. It involves optimizing the exhaust system routing and designing heat shields to protect various components that are in near proximity to the exhaust system. Reduced time to market necessitates an efficient process for thermal protection development. A robust procedure that utilizes state of the art CFD simulation techniques proactively during the design phase is described. Simulation allows for early detection of thermal issues and development of countermeasures several months before prototype vehicles are built. Physical testing is only used to verify the thermal protection package rather than to develop heat shields. The new procedure reduces the number of physical tests and results in a robust, efficient methodology.
X