Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Wheel Bearing Brinelling and a Vehicle Curb Impact DOE to Understand Factors Affecting Bearing Loads

2017-09-17
2017-01-2526
As material cleanliness and bearing lubrication have improved, wheel bearings are experiencing less raceway spalling failures from rotating fatigue. Warranty part reviews have shown that two of the larger failure modes for wheel bearings are contaminant ingress and Brinell damage from curb and pothole impacts. Warranty has also shown that larger wheels have higher rates of Brinell warranty. This paper discusses the Brinell failure mode for bearings. It reviews a vehicle test used to evaluate Brinell performance for wheel bearings. The paper also discusses a design of experiments to study the effects of factors such as wheel size, vehicle loading and vehicle position versus the bearing load from a vehicle side impact to the wheel. As the trend in vehicle styling is moving to larger wheels and low profile tires, understanding the impact load can help properly size wheel bearings.
Journal Article

Virtual Switches and Indicators in Automotive Displays

2020-04-14
2020-01-1362
This paper presents recent advances in automotive microprocessor, operating system, and supporting software technology that supports regulatory and/or functional safety graphics within vehicle cockpit displays. These graphics include “virtual switches” that replace physical switches in the vehicle, as well as “virtual indicators” that replace physical indicator lights. We discuss the functional safety design process and impacts to software and hardware architecture as well as the software design methods to implement End-To-End [E2E] network protection between different ECUs and software processes. We also describe hardware monitoring requirements within the display panel, backlighting, and touch screen and examine an example system design to illustrate the concepts.
Technical Paper

Virtual Powertrain Calibration at GM Becomes a Reality

2010-10-19
2010-01-2323
GM's R oad-to- L ab-to- M ath (RLM) initiative is a fundamental engineering strategy leading to higher quality design, reduced structural cost, and improved product development time. GM started the RLM initiative several years ago and the RLM initiative has already provided successful results. The purpose of this paper is to detail the specific RLM efforts at GM related to powertrain controls development and calibration. This paper will focus on the current state of the art but will also examine the history and the future of these related activities. This paper will present a controls development environment and methodology for providing powertrain controls developers with virtual (in the absence of ECU and vehicle hardware) calibration capabilities within their current desktop controls development environment.
Technical Paper

Virtual Development of Control Coordinator for Engine and Aftertreatment Architecture Equipped with Diesel Fuel Burner

2023-08-28
2023-24-0103
Heating devices are effective technologies to strengthen emission robustness of AfterTreatment Systems (ATS) and to guarantee emission compliance in the new boundaries given by upcoming legislations. Moreover, they allow to manage the ATS warm-up independently from engine operating conditions, thereby reducing the need for specific combustion strategies. Within heating devices, an attractive solution to provide the required thermal power without mandating a 48V platform is the fuel burner. In this work, a model-based control coordinator to manage the interaction between engine, ATS and fuel burner device has been developed, virtually validated, and optimized. The control function features a burner model and a control logic to deliver the needed amount of thermal energy, while ensuring ATS hardware protection.
Technical Paper

Vehicle Noise Sensitivity to Different Levels of Taper Wheel Bearing Brinell Damage for Body-on-Frame Passenger Vehicles

2022-09-19
2022-01-1192
This paper reviews the relationship between taper wheel bearing damage and vehicle noise and vibration for a body-on-frame pickup truck and a body-on-frame SUV. In addition to understanding how the different levels of bearing damage relate to vehicle noise, it also discusses the level of noise versus the damaged bearing’s position in the vehicle. For this study, the wheel bearing supplier provided front and rear bearings with various amounts of Brinell damage to the bearing raceways. The different bearings were evaluated subjectively for noise in the vehicle. After vehicle testing, the bearing raceway Brinell depths were measured to correlate the level of bearing damage to vehicle noise. The study shows the relationship between bearing Brinell dent depth and vehicle noise for body-on-frame light trucks and SUVs. The noise was most apparent in vehicles between 45 and 60 mph. For bearings with moderate levels of damage, steering inputs were required to hear noise.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

UltraCapacitor Power for a Drag Racecar

2004-11-30
2004-01-3500
A student team from Brigham Young University (BYU) set a new record for the world's fastest electric drag racecar. The team modified a production EV1 donated to the university by the General Motors Corporation and installed a bank of 160 UltraCapacitors rated at 2700 farads each. This paper describes the design of the capacitor pack, the car's drive train, the charging method and other modifications of the vehicle. Here we also discuss performance and race data from an official quarter-mile drag race sanctioned by the National Electric Drag Racing Association. A simulation model for vehicle performance was also developed and is presented here.
Technical Paper

Transient Aerodynamics Simulations of a Passenger Vehicle during Deployment of Rear Spoiler

2024-04-09
2024-01-2536
In the context of vehicle electrification, improving vehicle aerodynamics is not only critical for efficiency and range, but also for driving experience. In order to balance the necessary trade-offs between drag and downforce without significant impact on the vehicle styling, we see an increasing amount of active aerodynamic solutions on high-end passenger vehicles. Active rear spoilers are one of the most common active aerodynamic features. They deploy at high vehicle speed when additional downforce is required [1, 2]. For a vehicle with an active rear spoiler, the aerodynamic performance is typically predicted through simulations or physical testing at different static spoiler positions. These positions range from fully stowed to fully deployed. However, this approach does not provide any information regarding the transient effects during the deployment of the rear spoiler, which can be critical to understanding key performance aspects of the system.
Technical Paper

Toward Human-Robot Interface Standards: Use of Standardization and Intelligent Subsystems for Advancing Human-Robotic Competency in Space Exploration

2006-07-17
2006-01-2019
NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Technical Paper

Torque Ripple Cancellation to Reduce Electric Motor Noise for Electric Vehicles

2024-04-09
2024-01-2215
Electric motor whine is a major NVH source for electric vehicles. Traditional mitigation methods focus on e-motor hardware optimization, which requires long development cycles and may not be easily modified when the hardware is built. This paper presents a control- and software-based strategy to reduce the most dominant motor order of an IPM motor for General Motors’ Ultium electric propulsion system, using the patented active Torque Ripple Cancellation (TRC) technology with harmonic current injection. TRC improves motor NVH directly at the source level by targeting the torque ripple excitations, which are caused by the electromagnetic harmonic forces due to current ripples. Such field forces are actively compensated by superposition of a phase-shifted force of the same spatial order by using of appropriate current.
Technical Paper

Thermomechanical Fatigue Crack Growth Simulation in a Turbo-Housing Model Using Nonlinear Fracture Mechanics

2023-04-11
2023-01-0596
Turbocharger housings in internal combustion engines are subjected to severe mechanical and thermal cyclic loads throughout their life-time or during engine testing. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermo-mechanical fatigue (TMF) of the material. For the computational TMF life assessment of high temperature components, the DTMF model can provide reliable TMF life predictions. The model is based on a short fatigue crack growth law and uses local finite-element (FE) results to predict the number of cycles to failure for a technical crack. In engine applications, it is nowadays often acceptable to have short cracks as long as they do not propagate and cause loss of function of the component. Thus, it is necessary to predict not only potential crack locations and the corresponding number of cycles for a technical crack, but also to determine subsequent crack growth or even a possible crack arrest.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Journal Article

The Influence of Wheel Rotations to the Lateral Runout of a Hybrid Material or Dimensionally Reduced Wheel Bearing Flange

2021-10-11
2021-01-1298
The automotive industry is continuously striving to reduce vehicle mass by reducing the mass of components including wheel bearings. A typical wheel bearing assembly is mostly steel, including both the wheel and knuckle mounting flanges. Mass optimization of the wheel hub has traditionally been accomplished by reducing the cross-sectional thickness of these components. Recently bearing suppliers have also investigated the use of alternative materials. While bearing component performance is verified through analysis and testing by the supplier, additional effects from system integration and performance over time also need to be comprehended. In a recent new vehicle architecture, the wheel bearing hub flange was reduced to optimize it for low mass. In addition, holes were added for further mass reduction. The design met all the supplier and OEM component level specifications.
Journal Article

The Effect of Outer Ring Distortion on Wheel Bearing Friction Torque

2017-09-17
2017-01-2521
Wheel bearing friction torque (“drag”) directly contributes to vehicle fuel economy and CO2 emissions. At the same time, one of the most important factors for long-term durability of wheel bearings is effective seal performance. Since these two factors are often in conflict, it is important to balance the desire for low friction with the need for optimal sealing. One factor that affects wheel bearing sealing performance is the distortion of the outer ring that occurs when the bearing is mounted to the steering knuckle with fasteners. Minimizing this distortion is not just important for sealing, however. This paper explores the relationship between the outer ring distortion and the resulting friction torque. A design of experiments (DOE) approach was used in order to study the effects of the fastening bolt torque, constant velocity joint (CVJ) fastening torque, and outer ring distortion on component-level drag.
Technical Paper

Technical Challenges with on Board Monitoring

2024-04-09
2024-01-2597
The proposed Euro 7 regulation includes On Board Monitoring, or OBM, to continuously monitor vehicles for emission exceedances. OBM relies on feedback from existing or additional sensors to identify high emitting vehicles, which poses many challenges. Currently, sensors are not commercially available for all emissions constituents, and the accuracy of available sensors is not capable enough for in use compliance determination. On board emissions models do not offer enough fidelity to determine in use compliance and require new complex model innovation development which will be extremely complicated to implement on board the vehicle. The stack up of multi-component deterioration leading to an emissions exceedance is infeasible to detect using available sensors and models.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
Technical Paper

Spark Assist for CA50 Control and Improved Robustness in a Premixed LTGC Engine – Effects of Equivalence Ratio and Intake Boost

2018-04-03
2018-01-1252
Low-temperature gasoline combustion (LTGC) engines can deliver high efficiencies, with ultra-low emissions of nitrogen oxides (NOx) and particulate matter (PM). However, controlling the combustion timing and maintaining robust operation remains a challenge for LTGC engines. One promising technique to overcoming these challenges is spark assist (SA). In this work, well-controlled, fully premixed experiments are performed in a single-cylinder LTGC research engine at 1200 rpm using a cylinder head modified to accommodate a spark plug. Compression ratios (CR) of 16:1 and 14:1 were used during the experiments. Two different fuels were also tested, with properties representative of premium- and regular-grade market gasolines. SA was found to work well for both CRs and fuels. The equivalence ratio (ϕ) limits and the effect of intake-pressure boost on the ability of SA to compensate for a reduced Tin were studied. For the conditions studied, ϕ=0.42 was found to be most effective for SA.
Journal Article

Real World NOx Sensor Accuracy Assessment and Implications for REAL NOx Tracking

2021-04-06
2021-01-0593
The REAL NOx regulation requires tracking and reporting of NOx emissions starting in 2022MY for both medium-duty and heavy-duty diesel vehicles with potential to be considered during the next light-duty rulemaking. The regulation includes minimum NOx mass measurement accuracy requirements of either +/−20 percent or +/− 0.1 g/bhp-hr. Existing NOx sensor technology may not be able to meet the regulated accuracy requirements especially when exposed to other sources of variation within the emissions control system. This paper provides an assessment of real-world NOx sensor accuracy and the impact of other sources of variation and noise factors on NOx measurement accuracy. Noise factors investigated include NOx sensor tolerance, exhaust flow rate estimation, NOx sensor ammonia (NH3) cross sensitivity, mass air flow (MAF) sensor accuracy, NOx sensor placement, and laboratory emissions measurement capability.
Technical Paper

Random Vibration Fatigue Life Assessment of Transmission Control Module (TCM) Bracket Considering the Mean Stress Effect due to Preload

2020-04-14
2020-01-0194
Transmission Control Module (TCM) bracket is mounted on the vehicle chassis and is subjected to the random load excitation due to the uneven surface of the road. Assembly of the TCM bracket on the vehicle chassis induces some constant stress on it due to bolt preload, which acts as a mean stress along with the varying random loads. It is important for a design engineer and CAE analyst to understand the effect of all sources of loads on vehicle mount brackets while designing them. The objective of this study is to consider the effect of mean stress in the random vibration fatigue assessment of TCM bracket. The random vibration fatigue analyses are performed for all the three directions without and with consideration of mean loads and results are compared to show the significance of mean stresses in random vibration fatigue life.
Technical Paper

Racecar Aerodynamic Optimization for an E-1 Class Streamliner Using Arbitrary Shape Deformation

2007-09-17
2007-01-3858
This report presents the results of a CFD study to develop a bodywork package to improve the aerodynamic performance of the Brigham Young University (BYU) Electric Streamliner. A comparison of the pressure distribution and the flow around the baseline and final ‘recommended’ configuration is also presented. The effect of the CFD developed body geometry to the vehicle has been to increase downforce by almost 300lbf when it is at 200mph, while reducing drag by 8.5lbf. The final lift to drag ratio is -1.56 as compared to the .67 baseline.
X